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Abstract. While many tailor made card game protocols are known, the vast
majority of those lack three important features: mechanisms for distributing
financial rewards and punishing cheaters, composability guarantees and flexi-
bility, focusing on the specific game of poker. Even though folklore holds that
poker protocols can be used to play any card game, this conjecture remains
unproven and, in fact, does not hold for a number of protocols (including re-
cent results). We both tackle the problem of constructing protocols for general
card games and initiate a treatment of such protocols in the Universal Com-
posability (UC) framework, introducing an ideal functionality that captures
card games that use a set of core card operations. Based on this formalism, we
introduce Royale, the first UC-secure general card games which supports fi-
nancial rewards/penalties enforcement. We remark that Royale also yields the
first UC-secure poker protocol. Interestingly, Royale performs better than most
previous works (that do not have composability guarantees), which we high-
light through a detailed concrete complexity analysis and benchmarks from a
prototype implementation.

1 Introduction

Online card games have become highly popular with the advent of online casinos,
which act as trusted third parties performing the roles of both dealers and cashiers.
However, a malicious casino (potentially compromised by an insider attacker) can
easily subvert game outcomes [34]. Solving this issue has inspired a long line of research
on mental poker, i.e. playing poker among distrustful players without relying on a
trusted third party [3, 38, 19, 20, 31, 28, 17, 24, 37, 30, 33, 32]. Nevertheless, the
aforementioned mental poker protocols did not provide formal security definitions or
proofs. In fact, concrete flaws in the protocols of [38, 37] (resp. [3, 17]) have been
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identified in [30] (resp. [22]). Moreover, even if some of these protocols can be proven
secure, they do not ensure that aborting adversaries cannot prevent the game to reach
an outcome or that honest players receive the resulting financial rewards.

Techniques for ensuring that players receive their rewards according to game out-
comes were only developed recently by Andrychowicz et al. [2, 1, 6, 25], building on
decentralized cryptocurrencies. Their techniques also prevent misbehavior (including
aborts) by imposing financial penalties to adversaries who are caught deviating from
the protocol. Basically, they ensure that honest players either receive the rewards
determined by the game outcome or a share of the penalty imposed to the adversary
in case an outcome is not reached. These techniques were subsequently improved by
Kumaresan et al. [26, 7], who also applied them to constructing protocols for secure
card games with financial rewards/penalties. However, neither of these works provided
formal security definitions and proofs for their card game protocols.

The first security definition and provably secure protocol for secure poker with
financial rewards/penalties enforcement were recently proposed by David et al. [22],
which still only captures the specific game of poker. Moreover, the protocol of [22] lacks
composability guarantees, meaning that it cannot be arbitrarily executed along with
copies of itself and other protocols. In fact, none of the previous mental poker protocols
are composable and, consequently, re-purposing them for playing other games would
void their security guarantees, contradicting the folklore belief that poker protocols
yield protocols for any card game. While the recent work of [21] constructs composable
card game protocols, it only captures games without secret state (i.e. it cannot be
used to instantiate games where bluffing is a key element, such as poker). Our work
closes this gap by proposing a protocol for playing general card games that use a set
of core card operations with security proven in the Universal Composability (UC) [11]
framework, also yielding the first UC-secure protocol for the specific case of poker.

1.1 Our Contributions

We initiate a composable treatment of card game protocols, introducing both the first
ideal functionality for general card games and the first UC-secure tailor-made protocol
for general card games. Our functionality and matching protocol support core opera-
tions that can be used to construct a large number of different card games, as opposed
to previous protocols, which focus specifically on the game of poker. Besides capturing
a large number of card games, our protocol enforces financial rewards/penalties while
achieving efficiency comparable to previous works without UC-security. In fact, for
practical parameters, a DDH-based instantiation of our protocol is concretely more ef-
ficient than most previous works, most of which have no provable security guarantees.
Our contributions are summarized as follows:

– The first ideal functionality for general card games that can be expressed in terms
of a set of core card operations: FCG;

– Royale, the first provably secure protocol for general card games satisfying FCG;
– Royale is proven to UC-realize our functionality in the restricted programmable

and observable global random oracle model [9], being the first universally com-
posable card game protocol (also yielding the first UC-secure poker protocol);

– An efficient mechanism for financial rewards/penalties enforcement in Royale, and
a detailed efficiency analysis showing it outperforms previous works for practical
parameters and benchmarks obtained from a prototype implementation.
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As a first step in providing a composable treatment, we introduce an ideal function-
ality that captures general card games. It is parameterized by a program describing
the flow of the game being modeled, differently from the ideal functionality intro-
duced in [22], which only captures the flow of a poker game. This program determines
the order in which the functionality carries out a number of operations that are used
throughout the game, as well as the conditions under which a player wins or loses
the game. Namely, the game rules can request a number of core card operations:
public shuffling of closed cards on the table, private opening of cards (towards only
one player, used for drawing cards), public opening of cards and shuffling of cards in
a player’s private hand (which can be used to securely swap cards among players).
Moreover we provide an interface for the game rules to request public actions from the
players (allowing players to broadcast their course of action), such as placing a bet or
choosing a card from the table. We achieve financial rewards/penalties enforcement by
following the basic approach of [7] based on stateful contracts, which are modeled as a
separate ideal functionality in our construction. Each player deposits a collateral that
is forfeited (and distributed among the other players) in case he behaves maliciously
during protocol execution. If a player suspects that another player is misbehaving
(e.g. failing to send a message), a complaint is sent to the stateful contract function-
ality, which mediates the protocol execution until the conflict is resolved or a culprit
is found, resulting in the termination of the protocol after collateral deposit distribu-
tion. As pointed out in [7], such a stateful contract functionality can be implemented
based on smart contracts on blockchain-based systems such as Ethereum [8].

Finally, we construct Royale, a protocol for general card games that is proven to
UC-realize our functionality with the help of a stateful contract. It is constructed in a
modular fashion based on generic signature, threshold encryption and non-interactive
zero-knowledge (NIZK) proofs that can be efficiently instantiated under standard
computational assumptions (DDH) in the restricted programmable and observable
global random oracle model of [9]. As the contract is ultimately implemented by
a blockchain-based solution, one of the main bottlenecks in such a protocol is the
amount of on-chain storage required for executing the stateful contract, which must
analyze the protocol execution and determine whether a player has correctly executed
the protocol or not when a complaint is issued. We achieve low on-chain storage
complexity by providing compact checkpoint witnesses that allow the players to prove
that the protocol has been correctly executed (or not), differently from [7], which
requires large amounts of the protocol transcript to be sent to the contract.

The individual card operations in our protocol are inspired by Kaleidoscope [22],
which achieves the desired efficiency for the specific case of poker. However, Kaleido-
scope is based specifically on the DDH assumption and does not achieve UC-security,
Kaleidoscope’s security proof involves a simulator that makes heavy use of extrac-
tion of witnesses of NIZK proofs of knowledge based on the Fiat-Shamir heuristic,
which require rewinding the adversary in the security proof, an operation that is not
allowed in proofs in the UC framework. While substituting such Fiat-Shamir NIZKs
for UC-secure ZK proofs would solve this issue, the efficiency of the resulting protocol
would be greatly affected, since current UC-secure constructions [10] are significantly
less efficient than the simple NIZKs used in Kaleidoscope. We overcome this obstacle
without sacrificing efficiency through subtle modifications to the protocol itself, em-
ploying NIZK proofs of membership and a novel proof strategy that only requires the
simulator to generate simulated proofs, eliminating the need for rewinding.
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1.2 Related Works

Even though there is a large number of previous works on protocols for secure card
games, the problem of aborting adversaries and reward distribution for poker games
has only been (efficiently) addressed recently [7]. Moreover, as previously discussed,
formal security definitions and proofs for secure card game protocols were only re-
cently introduced in Kaleidoscope [22]. Since we aim at addressing both the issues of
composability and financial penalties/rewards distribution, we center our discussion
on the works of [7, 22], which are more closely related to this goal. See [22] for a
comprehensive discussion of efficiency and concrete security issues of previous works.

Enforcing Financial Rewards and Penalties: Most games of poker are played
with money at stake, posing two central challenges that were overlooked in the first
poker protocols but need to be solved in order to allow for practical deployment: (1)
protecting against potentially aborting cheaters and (2) ensuring that winners receive
their rewards. In the case of general secure computation, these challenges were only
recently addressed in an efficient way by Bentov et al. [7] with further optimizations of
an approach previously developed and pursued in [2, 1, 6, 25, 26]. The central idea in
the general purpose secure computation protocol of [7] is to execute an unfair protocol
without any interaction with the cryptocurrency network, relying on a single stateful
contract that handles funds distribution and financially punishes misbehaving parties.
Before the unfair protocol is executed, the stateful contract receives deposits of funds
that will be distributed according to the protocol output as well as of collateral funds
that will be used to punish misbehaving parties and compensate honest parties. In case
a party suspects cheating, it “complains” to the stateful contract, which will mediate
the protocol execution until a cheater is found or the complaint is solved (so that
execution can proceed off-chain). In case a party is found to be cheating, its collateral
funds are distributed among the honest parties and the protocol execution ends. If
the protocol reaches an output, the stateful contract distributes the funds deposited
at the onset of execution according to the output. Bentov et al. [7] apply this general
approach to tailor-made poker protocols [33, 32], aiming at implementing a secure
poker protocol with higher efficiency than their general purpose secure computation
protocol. However, their tailor-made protocol is not formally proven secure and, even
if found to be secure, has efficiency issues, as discussed in the remainder of this section.

Formal Security Guarantees: The vast majority of poker protocols [31, 19, 20,
28, 3, 38, 17, 24, 37, 30, 33, 32, 26, 7] claim different levels of security but do not
provide formal securities. Besides making it hard to assess the exact security offered
by such protocols, the lack of clear security definitions and proofs has led to concrete
security flaws in many of these protocols [38, 37, 3, 17], as pointed out in [30, 22].
While Bentov et al. [7] argue that their framework can be directly applied to tailor-
made poker protocols to provide financial rewards/penalties enforcement with high
efficiency, they do not provide a security proof for such a direct application of their
framework to tailor-made protocols nor describe the properties the underlying poker
protocol should satisfy. Their work specifically mentions the protocols of [33, 32] as
potential building blocks. However, [33, 32] are not formally proven secure. Using such
protocols as building blocks in a black-box way without a clear security definition and
proofs can lead to both security and composition issues. Moreover, even if proven se-
cure, [33, 32] face efficiency issues for practical parameters. In the poker case, the
lack of formal security definitions and proofs was only recently remedied by Kaleido-
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scope [22], which introduced both the first security definition for poker functionalities
and a matching protocol, considering financial rewards/penalties enforcement.

Efficiency Issues: As Royale is the first work to consider general card games,
we compare the efficiency of each card operation provided by Royale to the similar
operations provided in previous works on poker protocols. The most costly operation
is the shuffling of cards. The protocol of Barnett and Smart[3] (that serves as the
basis for many subsequent protocols) and the protocol of Wei and Wang [33] (cited
as a potential building block in [7]) rely on a cut-and-choose based ZK proof of
shuffle correctness, incurring high computational and communication overheads. A
subsequent work by Wei [32] (also cited as a potential building block in [7]) improves
on the complexity of the shuffle procedure by eliminating the need for cut-and-choose
but still requires a large number of rounds (more than 4n rounds, where n is the
number of players), which is also the case of [33]. The Kaleidoscope [22] protocol
employs a novel shuffling phase based on efficient NIZK proofs of shuffle correctness,
achieving better concrete efficiency both in terms of communication and computation
than previous works for practical parameters, while only requiring n rounds (for n
players). The shuffling procedure of a DDH-based instantiation of Royale (Section
3) inherits the same high efficiency of the Kaleidoscope shuffle while achieving UC-
security. The computational, communication and round complexities of opening cards
in Royale are very similar to those of previous works, which already achieved high
efficiency for these operations. For a more detailed discussion, we refer to Section 4.

Composability Issues: The need for arbitrary composability naturally arises in
poker and general card game protocols with financial rewards/penalties enforcement,
since those protocols need to use other cryptographic protocols, e.g. secure channels
and cryptocurrency protocols. This is specially critical in the case of general card
game protocols, where card operations are arbitrarily mixed and matched in order to
create different games, which can potentially cause serious security issues in proto-
cols without arbitrary composability guarantees. However, none of the previous works
on poker or card games protocols have considered this issue, and Kaleidoscope [22],
the only poker protocol with provable security guarantees, only achieves sequential
composability. The UC framework [11] is widely used to reason about arbitrary com-
posability for cryptographic protocols. The main obstacle to providing a proof of
security for Kaleidoscope as well as other previous poker protocols lies in their use of
NIZK proofs of Knowledge obtained from applying the Fiat-Shamir transformation to
Sigma protocols, heavily relying on rewinding for extracting witnesses in their secu-
rity proofs. In Royale, this is solved by employing a proof strategy that only requires
the simulator to generate simulated NIZKs without sacrificing efficiency.

2 Preliminaries

We denote the security parameter by κ and sampling an element x uniformly at

random from a set X by x
$← X . See Appendix A for further notation.

Re-Randomizable Threshold PKE: A re-randomizable threshold public key en-
cryption (RTE [36]) scheme is a central in our protocols. Intuitively, we focus of the
(n, n)-Threshold case, where the n parties need to cooperate in the decryption. We
present formal definitions in Appendix A. A summary of the main RTE algorithms
used in our construction is given below:
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– KeyGen(param) takes as input parameters param and outputs a public key pki and
a secret key ski.

– CombinePK(pk1, . . . , pkn) is a deterministic algorithm that takes as input a set of
public keys (pk1, . . . , pkn) and outputs a combined public key pk.

– Enc(pk,m) takes as input a public key pk and a plaintext message m, and outputs
a ciphertext ct.

– ReRand(pk, ct) is a re-randomization algorithm that takes as input a public key pk
and a ciphertext ct, and outputs a re-randomized ciphertext ct′.

– ShareDec(ski, ct) is a deterministic algorithm that takes as input a secret key share
ski and a ciphertext ct, and outputs a decryption share di.

– ShareCombine(ct, d1, . . . , dn) is a deterministic decryption share combining algo-
rithm that takes as input a ciphertext ct and a set of decryption shares (d1, . . . ,
dn), and outputs a plaintext message m.

NIZKs for Relations over RTE: We need a number of NIZKs for relations over the
RTE scheme we employ. Basically, a NIZK scheme NIZKR for relationR and algorithm
Prov that takes as input (x,w) ∈ R and outputs a proof π and an algorithm Verify that
takes as input (x, π) and outputs 1 if the proof is valid and 0 otherwise. For the sake of
clarity, we define the following generic relations for which we need to prove statements
in zero-knowledge and describe our protocols and simulators in terms of those: (1)
R1 - Correctness of public key share: This relation shows that the prover knows the
randomness used for generating a public/secret key pair (pki, ski) and the secret key
ski; (2) R2 - Correctness of decryption share: This relation shows that the prover used
the secret key ski corresponding to its public key pki for computing a decryption share
di of a ciphertext ct; (3) R3 - Correctness of shuffle: This relation shows that the
prover correctly shuffled a set of ciphertexts (ct1, . . . , ctm) by re-randomizing them
with randomness (r1, . . . , rm) and permuting them with a permutation Π. Formal
definitions for these NIZKs and an instantiation from sigma protocols in the Global
Random Oracle model are presented in Appendix A and Appendix B.

Security Model: We prove our protocols secure in the UC framework [11]. UC-secure
protocols retain their security even when used in parallel with other cryptographic
protocols or as building blocks of more complex applications. We consider static ma-
licious adversaries, who can arbitrarily deviate from the protocol but only corrupt
parties before execution starts. It is known that UC-secure two-party and multiparty
protocols for non-trivial functionalities require a setup assumption [14]. The main
setup assumption for our work is the global random oracle model [5] modelled as the
GrpoRO-hybrid model [9], a digital signature functionality FDSIG from [12], and a smart
contract functionality (defined in Section 3). See Appendix A for details.

The Stateful Smart Contract Functionality FSC: We follow the approach of
Bentov et al. [7] in describing a functionality FSC that models a stateful contract.
Such a contract receives coins from the players in a check-in procedure and, after
that, is only activated in case a player wishes to report misbehavior or wishes to
leave the game, retrieving the coins that he owns at that point. While Bentov et al.
describe a stateful contract functionality that models execution of general programs
with secure cash distribution (i.e. the output of the computation determines how
coins are distributed among honest players) and penalties for misbehavior, we focus
on the specific case of card games. That means that our functionality only allows a
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program GR that specifies the game rules to execute specific card operations instead
of general computation. The card operations supported by our protocol are the ones
described in functionality FCG. However, as discussed in Apprendix C, we can extend
FCG by incorporating other functionalities for which UC protocols exist. In this case,
GR is also allowed to specify the operations described in these functionalities and the
stateful contract modelled by GR is also responsible for ensuring that the protocols
realizing these functionalities are correctly executed. We describe FSC in Figure 1.

3 Secure Protocol for Playing Card Games

In this section we describe a protocol that realizes functionality FCG (defined in Ap-
pendix C) with the help of a smart contract. The role of the smart contract is to
make sure that all players are executing the card operations (and other game actions)
as specified by the game rules programmed in GR and punish (resp. compensate)
malicious (resp. honest) players in case of dispute. The basic idea is to follow the
secure computation with financial penalties framework initiated by [2, 1] and have
each player send to the contract an amount of coins that will be used for betting in
the protocol and another amount of coins used as collateral. If a player suspects that
another player is cheating in the game or misbehaving in protocol execution, it sends
a request to the smart contract, which verifies protocol execution and, in case a player
was actually found to be misbehaving, financially punishes the malicious player by
distributing its collateral coins among the honest players.
Protocol πCG: We construct a Protocol πCG that realizes FCG in a modular fash-
ion. The main building block of this protocol is a re-randomizable threshold public
key encryption (RTE) and associated non-interactive zero-knowledge proofs (NIZK).
Moreover, we will rely on a global random oracle functionality GrpoRO to apply the
Fiat-Shamir heuristic to sigma protocols used for instantiating these NIZKs as de-
scribed in Appendix B. Additionally, a standard digital signature functionality FDSIG

will be used as building block in this protocol. Later on, we will describe a concrete
instantiation of the protocol under the DDH assumption.

In this protocol, the players start by jointly generating a public key for the RTE
scheme along with individual secret key shares. The main idea is to represent open
cards as ciphertexts of the RTE scheme encrypting a card value [1, . . . , 52] without
any randomness (or randomness 0) while closed cards are shuffled such that they
are represented by a re-randomized ciphertext that is permuted in way that cannot
be reversed by any proper subset of the players (so that no collusion of players can
trace the shuffling back to the open cards). The shuffle operation is done by having
each player act in sequence, taking turns in rerandomizing all ciphertexts representing
cards and permuting the resulting rerandomized ciphertexts, while proving in zero-
knowledge that these operations were executed correctly. When a closed (shuffled)
card has to be revealed to a player, all other players send decryption shares of the
ciphertext representing this card computed with their respective secret keys, along
with proofs that these decryption shares have been correctly computed.

Throughout the protocol, after the players perform a card operation or answer
an action request from GR, they jointly generate a checkpoint witness proving that
the operation has been completed successfully. These checkpoint witnesses contain
signatures by all users on the current state of the protocol,i.e. ciphertexts representing
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Functionality FSC

FSC is executed with players P1, . . . ,Pn and is parametrized by a timeout limit τ , and the
values of the initial stake t, the compensation q and the security deposit d ≥ (n − 1)q.
There is an embedded program GR that represents the game’s rules and a protocol
verification mechanism pv.

– Players Check-in: When execution starts, FSC waits to receive from each player Pi
the message (checkin, sid,Pi, coins(d+ t), SIG.vki, pki, π

i
R1

) containing the necessary
coins, its signature verification key, its share of the threshold ElGamal public-key and
the zero-knowledge proof of knowledge of the secret-key’s share. Record the values
and send (checkedin, sid,Pi,SIG.vki, pki, π

i
R1

) to all players. If some player fails to
check-in within the timeout limit τ or if a message (checkin-fail, sid) is received from
any player, then send (compensation, coins(d+ t)) to all players who have checked in
and halt.

– Player Check-out: Upon receiving (checkout-init, sid,Pj) from Pj , send to
all players (checkout-init, sid,Pj). Upon receiving (checkout, sid,Pj , payout,
σ1, . . . , σn) from Pj , verify that σ1, . . . , σn are valid signatures by the players
P1, . . . ,Pn on (CHECKOUT|payout) according to FDSIG. If all tests succeed, for i =
1, . . . , n, send (payout, sid,Pi, coins(w)) to Pi, where w = payout[i] + d, and halt.

– Recovery: Upon receiving a recovery request (recovery, sid) from a player Pi,
send the message (request, sid) to all players. Upon receiving (response, sid,Pj ,
Checkpointj , procj) from some player Pj with checkpoint witnesses (which are not nec-
essarily relative to the same checkpoint as the ones received from other players) and
witnesses for the current procedure; or an acknowledgement of the witnesses previous
submitted by another player, forward this message to the other players. Upon receiv-
ing replies from all players or reaching the timeout limit τ , fix the current procedure
by picking the most recent checkpoint that has valid witnesses (i.e. the most recent
checkpoint witness signed by all players Pi). Verify the last valid point of the proto-
col execution using the current procedure’s witnesses, the rules of the game GR, and
pv. If some player Pi misbehaved in the current phase (by sending an invalid mes-
sage), then send (compensation, coins(d+ q + balance[j] + bets[j])) to each Pj 6= Pi,
send the leftover coins to Pi and halt. Otherwise, proceed with a mediated execution
of the protocol until the next checkpoint using the rules of the game GR and pv to
determine the course of the actions and check the validity of the answer. Messages
(nxt-stp, sid,Pi, proc, round) are used to request from player Pi the protocol message
for round round of procedure proc according to the game’s rules specified in GR, who
answer with messages (nxt-stp-rsp, sid,Pi, proc, round,msg), where msg is the re-
quested protocol message. All messages (nxt-stp, sid, . . .) and (nxt-stp-rsp, sid, . . .)
are delivered to all players. If during this mediated execution a player misbehaves or
does not answer within the timeout limit τ , penalize him and compensate the others
as above, and halt. Otherwise send (recovered, sid, proc,Checkpoint), to the parties
once the next checkpoint Checkpoint is reached, where proc is the procedure for which
Checkpoint was generated.

Fig. 1. Functionality FSC.

cards and each player’s balance and current bets. If a player suspects that any other
player is cheating (or has aborted) during an execution, it complains to the smart
contract, providing its latest checkpoint. The execution is then mediated by the smart
contract, which receives (and broadcasts) all messages generated by the players. If the
smart contract detects that a player is cheating in this execution (by examining the

8



transcript), it punishes the misbehaving player by distributing its collateral coins
among the honest players. We describe Protocol πCG in Figures 2, 3 and 4.
Security Analysis: Due to page limit the security analysis is given Appendix D.
A DDH-Based Instantiation: We now describe an instantiation of the Protocol
πCG that is secure under the popular DDH assumption in the random oracle model
(i.e. substituting FRO for a cryptographic hash function). The main components
we need to construct in order to instantiate our protocol are the re-randomizable
threshold public-key encryption scheme RTE and the NIZKs Proof of Membership
schemes NIZKR1

,NIZKR2
,NIZKR3

for relations R1,R2,R3. It was shown in [36, Ap-
pendix C.2], that the threshold version of the ElGamal cryptosystem is a secure
re-randomizable threshold public-key encryption scheme under the DDH assump-
tion. Moreover, it was also shown in [36, Appendix C.2] that there exist NIZKs
NIZKR1

,NIZKR2
,NIZKR3

for relations R1,R2,R3 secure under the DDH assump-
tion. NIZKR1

can be implemented by the sigma protocol of Schnorr [29], NIZKR2
can

be implemented by the protocol of Chaum and Pedersen [18] and NIZKR3 can be
implemented by the protocol of Bayer and Groth [4]. Notice that the zero-knowledge
argument of shuffle correctness of Bayer and Groth [4] requires a common reference
string that consists of random group elements such that the discrete logarithm of
these elements in a given base is unknown. We point out that such a common refer-
ence string can be trivially constructed before πCG is run by coin tossing, which can be
UC-realized based on UC-secure commitments [11, 14]. UC-secure commitments can
be efficiently constructed in the restricted programmable and observable global ran-
dom oracle model as proven in [9]. Even though these protocols are interactive, they
can be made non-interactive through the Fiat-Shamir heuristic [23, 27]. Notice that
their simulators are straight-line since they only need to program the random oracle.
As for the digital signature functionality FDSIG, it is known that EUF-CMA signature
schemes (e.g. DSA and ECDSA) realize FDSIG. If we use the resulting DDH-based
instantiation to implement poker, we obtain a protocol very similar to the Kaleido-
scope [22], thus obtaining a universally composable protocol for poker with rewards
and penalties that matches the best current (but not UC-secure) protocol.

4 Efficiency Analysis

Royale is both the first cryptographic protocol to support general card games that
use a set of core card operations and one of the very few based on generic primi-
tives, making it hard to compare its efficiency with previous works that are based
on specific computational assumptions and focused on poker. Therefore, we estimate
and compare the computational, communication and round complexities of each in-
dividual card operation in the works that introduce the previously most efficient (but
unproven) poker protocols with the card operations in the DDH-based instantiation
of Royale (described in Section 3). For the comparison, we consider the works of Bar-
nett and Smart [3], and the protocols proposed as a building block for the (unproven)
tailor-made poker protocol of Bentov et al. [7]: Wei and Wang [33] and Wei [32]. We
remark that these previous works have not been formally proven secure. Moreover,
differently from Royale, even if these previous works can be proven to implement a
game of poker, using their card operations arbitrarily might cause security issues, as
they are not composable.
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Protocol πCG (First Part)

Let RTE be a secure re-randomizable threshold public-key encryption For i ∈ {1, 2, 3},
let NIZKRi = (Prov,Verify,Sim,Ext) be a NIZK proof of membership scheme for the
relation Ri.Protocol πCG is parametrized by a security parameter 1κ, RTE parameters
param← Setup(1κ), a timeout limit τ , the values of the initial stake t, the compensation q,
the security deposit d ≥ (n−1)q and an embedded program GR that represents the rules of
the game. In all queries (sign, sid,m) to FDSIG, the message m is implicitly concatenated

with NONCE and cnt, where NONCE
$← {0, 1}κ is a fresh nonce (sampled individually

for each query) and cnt is a counter that is increased after each query. Every player
Pi rejecting signatures that reuse nonces and implicitly concatenates the corresponding
NONCE and cnt values with message m in all queries (verify, sid,m, σ,SIG.vk′) to FDSIG.
Protocol πCG is executed by players P1, . . . ,Pn interacting with functionalities FCG, GrpoRO
and FDSIG as follows:

– Checkpoint Witnesses: After the execution of a procedure, the players store a
checkpoint witness that consists of the lists CO, CC , C1, . . . , Cn, the vectors balance
and bets as well as a signature by each of the other players on the concatenation
of all these values. Each signature is generated using FDSIG and all players check all
signatures using the relevant procedure of FDSIG. Old checkpoint witnesses are deleted.
If any check fails for Pi, he goes to the recovery procedure.

– Recovery Triggers: All signatures and zero-knowledge proofs in received messages
are verified by default. Players are assumed to have loosely synchronized clocks and,
after each round of the protocol starts, players expect to receive all messages sent
in that round before a timeout limit τ . If a player Pi does not receive an expected
message from a player Pj in a given round before the timeout limit τ , Pi considers that
Pj has aborted. After the check-in procedure, if any player receives an invalid message
or considers that another player has aborted, it proceeds to the recovery procedure.

– Tracking Balance and Bets: Every player Pi keeps a local copy of the vectors
balance and bets, such that balance[j] and bets[j] represent the balance and current bets
of each player Pj , respectively. To keep the copies up to date, every player performs:

• At each point that GR specifies that a betting action from Pi takes place, player
Pi broadcasts a message (bet, sid,Pi, beti), where beti is the value of its bet. It
updates balance[i] = balance[i]− bi and bets[i] = bets[i] + bi.

• Upon receiving a message (bet, sid,Pj , betj) from Pj , player Pi sets balance[j] =
balance[j]− bj and bets[j] = bets[j] + bj .

• When GR determines that player Pj receives an amount payj and has its bet amount
updated to b′j , player Pi sets balance[j] = balance[j] + payj and bets[j] = b′j .

– Executing Actions: Each Pi follows GR that represents the rules of the game, per-
forming the necessary card operations, as well as updates on the list of card and balance
and bet vectors, in the order specified by GR. If GR request an action with description
act−desc from Pi, all the players output (act, sid,Pi, act−desc) and Pi executes any
necessary operations. Pi broadcasts (action-rsp, sid,Pi, act−rsp, σi), where act−rsp
is his answer and σi his signature on act − rsp, and outputs (action-rsp, sid,Pi,
act − rsp). Upon receiving this message, all other players check the signature, and
if it is valid output (action-rsp, sid,Pi, act − rsp). If a player Pj believes cheating
happened, he proceeds to the recovery procedure.

– Compensation: Upon receiving from FSC (compensation, sid,Pi, coins(w)), output
this message and halt.

Fig. 2. Protocol πCG (First Part).
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Protocol πCG (Second Part)

– Check-in: Every player Pi proceeds as follows:

1. Send (keygen, sid) to FDSIG, receiving (verification key, sid, SIG.vki).

2. Sample ri
$← {0, 1}κ and generate a key pair (pki, ski) ← KeyGen(param, ri) and

a NIZK of public key correctness πiR1
by computing NIZKR1 .Prov with (ri, ski)

as witness.
3. Send (checkin, sid,Pi, coins(d+ t), SIG.vki, pki, π

i
R1

) to FSC.

4. For Pj 6= pi, upon receiving (checkedin, sid,Pj ,SIG.vkj , pkj , π
j
R1

) from FSC,

check if πjR1
is valid. If valid, output (checkedin, sid,Pj).

5. Upon receiving valid check-in from all parties, compute pk ← CombinePK(pk1,
. . . , pkn). Initialize the internal lists of open cards CO, of closed cards CC and
of private cards of each player Pi, Ci, as empty sets. We assume parties have a
sequence of unused card id values (e.g. a counter). Initialize vectors balance[j] = t
and bets[j] = 0 for j = 1, . . . , n.

6. If Pi fails to receive a check-in of another party Pj within the timeout limit τ , it
requests FSC to dropout and receive its coins back.

– Create Card: To create a card with value v, every player Pi selects the next unused
card id id, stores (id, v) in CO and outputs (newcard, sid, id, v).

– Shuffle Cards: To shuffle a set of cards with id values id1, . . . , idm, Pi removes all
the (eventual) cards (idk, vidk ), for k ∈ {1, . . . ,m}, that are in the list of opened
cards CO from that list and adds (id, ctidk ), for ctidk ← Enc(pk, vidk , 0), in CC . De-
fine (ct0id1 , . . . , ct0idm) = (ctid1 , . . . , ctidm), where the right-hand side cards are stored,
together with the respective id values, in the internal list CC . For j = 1, . . . , n:

1. If j 6= i, upon receiving the message (shuffle, sid,Pj , id1, . . . , idm, ctjid1 , . . . ,

ctjidm , π
j
R3

) from Pj , Pi verifies if πjR3
is valid.

2. If j = i, sample a random permutation Π and, for k = 1, . . . ,m, let rk
$←

{0, 1}κ and ctiidk ← ReRand(pk, cti−1
Π(idk)

, rk). Broadcast (shuffle, sid,Pi, id1, . . . ,

idm, ctiid1 , . . . , ctiidm , π
i
R3

), where πiR3
is generated by computing NIZKR3 .Prov with

(Π, (r1, . . . , rm)) as witness.

Every player Pi sets its internal list of closed cards CC to
(
(id1, ctnid1), . . . , (idm, ctnidm)

)
and outputs (shuffled, sid, id1, . . . , idm).

– Shuffle Private Cards: In order to shuffle a set of private cards with id values
id1, . . . , idm belonging to player Pj , player Pi proceed as follows:

• If i = j, sample a random permutation Π and let rk
$← {0, 1}κ, ct′idk ←

ReRand(pk, ctΠ(idk), rk) for k = 1, . . . ,m. Broadcast (privshuffle, sid,Pj , id1, . . . ,

idm, ct′id1 , . . . , ct′idm , π
j
R3

), where πjR3
is generated by computing NIZKR3 .Prov with

(Π, (r1, . . . , rm)) as witness.
• If i 6= j, upon receiving (PrivShuffle, sid,Pj , id1, . . . , idm, ct′id1 , . . . , ct′idm , π

j
R3

)

from Pj , verify if πiR3
is valid.

Pj outputs (private-shuffled, sid, (id1, v
′
1), . . . , (idm, v

′
m)), where the new card val-

ues v′1, . . . , v
′
m associated to each id value are known to him, and the other parties

output (private-shuffled, sid, id1, . . . , idm). All players update their local list CC .

Fig. 3. Protocol πCG (Second Part).
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Protocol πCG (Third Part)

– Open Public Card: In order to open a public card ctid, each Pi proceeds as follows:

• Compute di ← ShareDec(ski, ctid) and generate a NIZK of decryption share cor-
rectness πiR2

by computing NIZKR2 .Prov with (ri, ski) as witness (where ri was
used in generating (pki, ski)) and broadcast (opencard, sid,Pi, id, di, πiR2

).

• Upon receiving (opencard, sid,Pj , id, dj , πjR2
) from Pj , verify if πjR2

is valid.
Upon receiving valid decryption shares from all players, retrieve the value of card
ctid by computing vid ← ShareCombine(d1, . . . , dn). Add (id, vid) to CO and output
(card, sid, id, vid).

– Open Private Card: To open a private card ctid towards player Pj , all players
proceed as follows:

• For i 6= j, Pi computes di ← ShareDec(ski, ctid) and generates a NIZK of de-
cryption share correctness πiR2

by computing NIZKR2 .Prov with (ri, ski) as wit-
ness (ri is the randomness used to generate (pki, ski)) and sends (opencard, sid,
Pi, id, di, πiR2

) to Pj . Add id to Cj .
• Player Pj , upon receiving (opencard, sid,Pi, id, di, πiR2

) from Pi, verifies if πiR2
is

valid. Upon receiving valid decryption shares from all other players, Pj computes
dj ← ShareDec(skj , ctid) and retrieves the value of the card by computing vid ←
ShareCombine(d1, . . . , dn). Pj adds id to Cj and outputs (card, sid, id, vid).

– Check-out: A player Pj can initiate the check-out procedure and leave the protocol
at any point that GR allows, in which case all players will receive the money that
they currently own plus their collateral refund. The players proceed as follows:

1. Pj sends (checkout-init, sid,Pj) to FSC.
2. Upon receiving (checkout-init, sid,Pj) from FSC, each Pi (for i = 1, . . . , n)

sends (sign, sid, (CHECKOUT|payout)) to FDSIG (where payout is a vector containing
the amount of money that each player will receive according to GR), obtaining
(signature, sid, (CHECKOUT|payout), σi) as answer. Player Pi sends σi to Pj .

3. For all i 6= j, Pj sends (verify, sid, (CHECKOUT|payout), σi,SIG.vki) to FDSIG,
where payout is computed locally by Pj . If FDSIG answers all queries (verify, sid,
(CHECKOUT|payout), σi, SIG.vki) with (verified, sid, (CHECKOUT|payout), 1), Pj
sends (checkout, sid, payout, σ1, . . . , σn) to FSC. Otherwise, go to Recovery.

4. Upon receiving (payout, sid,Pi, coins(w)) from FSC, Pi outputs that and halts.

– Recovery: Player Pi proceeds as follows:

• If player Pi activates the Recovery procedure, it sends (recovery, sid) to FSC.
• Upon receiving (request, sid) from FSC, every player Pi sends (response, sid,Pi,

Checkpointi, proci) to FSC, where Checkpointi is Pi’s latest checkpoint witness and
proci is Pi’s witness for the protocol phase that started after the latest checkpoint;
or acknowledges another player’s witness if it matches Checkpointi.

• Upon receiving (nxt-stp, sid,Pi, proc, round) from FSC, Pi sends (nxt-stp-rsp,
sid,Pi, proc, round,msg) to FSC, where msg is the protocol message that should be
sent at round round of procedure proc of the protocol according to GR.

• Upon receiving a message (nxt-stp-rsp, sid,Pj , proc, round,msg) from FSC, every
player Pi considers msg as the protocol message sent by Pj in round of procedure
proc and take it into consideration for future messages.

• Upon receiving a message (recovered, sid, proc,Checkpoint) from FSC, every
player Pi records Checkpoint as the latest checkpoint and continues protocol exe-
cution according to the game rules GR.

Fig. 4. Protocol πCG (Third Part).

12



Instantiating the Building Blocks: We consider the protocols of Barnett and
Smart [3], Wei and Wang [33] and Wei [32] to be instantiated with the same random
oracle-based commitments and NIZKs based on the Fiat-Shamir heuristic used in
our DDH-based instantiation of Royale. For the protocols of [3] and [33] a cut-and-
choose security parameter of s = 40 is considered, while for the protocol of [32], we
consider the parameter k = 4. In the NIZK of shuffle correctness used by Royale (the
construction of [4]), the total number of cards is represented as m = m1m2 and the
choice of m1 and m2 affects both the computational and communication complexities.
Even though the choice of m1 and m2 can be optimized to obtain either shorter or
faster proofs, in our general comparison we assume that m1 = m2 = d

√
me.

Computational Complexity: The estimation is in terms of modular exponen-
tiations executed for each card operation, since these operations tend to dominate
the complexity. We present the amount of local computation performed on Table 1.
As previously observed, the Open Public Card and Open Private Card of all proto-
cols in our comparison have roughly the same concrete complexity, while the Shuffle
Cards phase is the main bottleneck. Notice that the two most efficient protocols in our
comparison are Royale and Wei’s protocol [32] (and consequently the instantiation
of Bentov et al. [7] based on it), which has better asymptotic efficiency than Royale.
However, we remark Royale achieves better concrete efficiency for practical parame-
ters. For example, in a 6-player game and a standard deck of 52 cards (e.g. Poker),
the Shuffle Cards phase of [32] requires approximately 3 times more exponentiations
than Royale. Further estimations for practical parameters are in Appendix F.

Communication Complexity: We estimate the communication complexity in
terms of the number of elements of G and elements of Zp exchanged in each phase
of the protocols in Table 1. In contrast to the case of computational complexity,
we consider the total amount of data exchanged over the network by all players
during each phase of the analyzed protocols. As it is the case with computational
complexity, the Shuffle Cards phase constitutes the main bottleneck and dominates
complexity. Notice that the most efficient protocols in our comparison are Royale
and the protocol of Wei [32] (and consequently the instantiation of Bentov et al. [7]
based on it). However, in this case, Royale actually achieves both better asymptotic
communication complexity and better concrete efficiency than [32]. For example, in a
6-player game and a standard deck of 52 cards (e.g. Poker), the Shuffle Cards phase
of [32] exchanges approximately 8 times more elements of G and twice more elements
of Zp. Further estimations for practical parameters are in given in Appendix F.

Round Complexity: As in the previous cases, the Shuffle Cards phase is the
main bottleneck. Royale’s Shuffle Card phase requires only n rounds (where n is the
number of players) while [33] and [32] require respectively 4n+ 1 and 4n+ 3 rounds.
Hence, Royale has a clear advantage in round complexity, which results in better
performance in high latency networks such as the Internet.

Checkpoint and On-Chain Storage Complexity: When the smart contract
functionality FSC is implemented by a smart contract system running on top of a
blockchain, the information sent by the players to FSC has to be stored in space-
constrained blocks, raising a concern about on-chain storage complexity. First, we
remark that Royale is designed in such a way that only the Check-in, Check-out
and Recovery phases cause any information to be sent to FSC (and consequently
stored in the blockchain), with the Recovery phase only being activated if a player
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misbehaves. In the Check-in phase, signature verification keys and public key shares
(plus associated proofs of validity) for each players are registered with the smart
contract, amounting to storing (2 G + 2 Zp)n bits, where n is the number of players.
In the Check-out phase, the vector payout (of size |payout|) along with signatures
by each player are sent to the smart contract, amounting to |payout| + 2n Zp of
storage. In the Recovery phase, the most up-to-date checkpoint witness is sent to
the smart contract, which subsequently registers all other player’s messages for the
phase to be executed after this checkpoint witness was generated. The worst case
for checkpoint witness size is that where all cards are still closed, resulting in size
2m G + |id|m + |balance| + |bets| + 2n Zp bits, where n is the number of players, m
is the number of cards and |id|,|balance| and |bets| are the sizes of card identification
string id, vector balance and vector bets, respectively. The messages of the phase
executed after the latest checkpoint amount to extra on-chain storage equal to the
communication complexity of each phase (as estimated above). On the other hand,
the protocol of Bentov et al. [7] (based on [32] or [33]), does not specify checkpoint
witnesses (seemingly requiring the full transcript of the current poker game to be sent
to the smart contract) nor offers any complexity estimates for Check-in and Check-out
phases, making it hard to provide a meaningful comparison.

Computational Complexity Communication Complexity

Shuffle
Cards

Open
Private
Card

(drawer
;others)

Open
Public
Card

Shuffle
Cards

Open Private
Card (drawer

;others)

Open
Public
Card

[3]
240m(n− 1)

+161m
4n− 3; 3 4n

164nm G,
122nm Zp

45nm G, (2n2+
80n+ 2nm) Zp

n(17m+ 5) G,
n(m+ 18) Zp

[7]
([33])

(44n+ 1)m 4n− 3; 3 4n
3(n− 1) G,
2(n− 1) Zp

(n− 1) G,
2(n− 1) Zp

(n− 1) G,
2(n− 1) Zp

[7]
([32])

81m+ 2n
+25

4n− 3; 3 4n 3n G, 2n Zp n G, 2n Zp n G, 2n Zp

Royale
(2 log(d

√
me)

+4n− 2)m
4n− 3; 3 4n

n(2m+ d
√
me) G,

5nd
√
me Zp

(n− 1) G,
2(n− 1) Zp

n G, 2n Zp

Table 1. Complexities for each player in terms of modular exponentiations and group and
ring elements G and Zp, for n players and m cards.

Benchmarks. We now present benchmarks of Royale obtained with a proto-
type implementation of the DDH-based instantiation, showcasing the efficiency of our
protocol for practical parameters. Our prototype implementation was done in Haskell
using NIST curve P-256. Experiments were conducted on a XPS 9370 with a i7 8550U
CPU and 16 GB RAM running with Linux Fedora 28 (kernel 4.16). We analyze the
network communication and execution time of Royale with different numbers of cards
(denoted by m in the tables) and players (denoted by n in the tables). We focus on
the following phases of Royale: Check-Out, Check-Out, Shuffle Cards, Shuffle Pri-
vate Cards. Moreover, we analyse on-chain storage requirements for the Checkpoint
Witnesses used in the Recovery Phase considering an implementation of the smart
contract functionality FSC based on a smart contract that verifies individual steps of
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Royale (i.e. checking NIZK, signature and encryption validity). We evaluate the exe-
cution time required by the aforementioned phases of Royale in milliseconds (ms) and
consider network delays in terms of Round Trip Times (RTT). Our analysis shows
that Royale achieves high computational efficiency, with network delays representing
the main bottleneck. We analyze the on-chain storage required by Royale in terms
of the size in kilobytes (KB) of the data stored by the smart contract in each phase,
which is zero for all phases, except for Check-in, Check-out and Recovery. Our analy-
sis shows that the on-chain footprints of these three latter phases is reasonably small
for practical parameters. While the Recovery phase always requires storage of the
must up-to-date checkpoint witness, it also requires players’ messages for the current
phase to be stored (i.e. the network communication required for each phase).

n Check-In Check-Out

2 0.25 0.38

4 0.51 0.75

6 0.76 1.13

8 1.02 1.5

10 1.27 1.88

12 1.52 2.25

Table 2. On-Chain
Storage Size (in KB).

n
m

52 104 208

2 200.64 + 1 RTT 387.67 + 1 RTT 886.32 + 1 RTT

4 401.28 + 2 RTT 775.33 + 2 RTT 1772.64 + 2 RTT

6 601.93 + 3 RTT 1163 + 3 RTT 2658.96 + 3 RTT

8 802.57 + 4 RTT 1550.66 + 4 RTT 3545.28 + 4 RTT

10 1003.21 + 5 RTT 1938.33 + 5 RTT 4431.6 + 5 RTT

12 1203.85 + 6 RTT 2326 + 6 RTT 5317.92 + 6 RTT

Table 3. Execution time in ms and Round-trip time (RTT) for
the Shuffle Card.

The on-chain storage requirements of the Check-in and Check-Out Phases are
presented in Table 2. Notice that all communication in these phases is done via the
smart contract and does not depend on the number of cards. The execution time
and network communication for the Shuffle Cards phase are presented in Table 3 and
Table 4, respectively. The execution time is presented as the sum of the local compu-
tation time required of each player and the network Round Trip Times necessary for
delivering this phase’s messages. Checkpoint witnesses size for our implementation
is presented in Table 5. As previously discussed, we consider the size of checkpoint
witnesses in the worst case, where all cards are closed (which results in the largest
representation). For the setting of a poker game with 52 cards and 6 players, we ob-
tain a worst case checkpoint witness of less than 4 KB. In case the Recovery Phase is
activated, the smart contract receives (and stores on-chain) both the latest checkpoint
witness and the next messages to be generated in the protocol, corresponding to the
network communication of the current phase. Further benchmark data are presented
in Appendix F.

n
m

52 104 208

2 13.73 24.49 40.73

4 27.45 48.98 81.47

6 41.18 73.48 122.2

8 54.91 97.97 162.94

10 68.63 122.46 203.67

12 82.36 146.95 244.41
Table 4. Network communication in the
Shuffle Cards phase in (KB).

n
m

52 104 208

2 3.61 7.06 13.97

4 3.77 7.22 14.13

6 3.92 7.38 14.28

8 4.08 7.53 14.44

10 4.23 7.69 14.59

12 4.39 7.84 14.75
Table 5. Checkpoint Witnesses on-chain
storage size (KB).
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17. Jordi Castellà-Roca, Francesc Sebé, and Josep Domingo-Ferrer. Dropout-tolerant ttp-
free mental poker. In Sokratis Katsikas, Javier López, and Günther Pernul, editors, Trust,
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A Additional Preliminaries

We denote the security parameter by κ. For a randomized algorithm F , y
$← F (x)

denotes running F with input x and its random coins, obtaining an output y. If we
need to specify the coins r, we will use the notation y ← F (x; r). We denote sampling

an element x uniformly at random from a set X by x
$← X . For a distribution Y, we

denote sampling y according to the distribution Y by y
$← Y. We say that a function f

is negligible in n if for every positive polynomial p there exists a constant c such that
f(n) < 1

p(n) when n > c. We denote by negl(κ) the set of negligible functions in κ.

Two ensembles X = {Xκ,z}κ∈N,z∈{0,1}∗ and Y = {Yκ,z}κ∈N,z∈{0,1}∗ of binary random
variables are said to be statistically indistinguishable, denoted by X ≈s Y , if for all z it
holds that | Pr[D(Xκ,z) = 1]−Pr[D(Yκ,z) = 1] | is negligible in κ for every probabilistic
distinguisher D. In case this only holds for non-uniform probabilistic polynomial-time
(PPT) distinguishers we say that X and Y are computationally indistinguishable and
denote it by X ≈c Y .

A.1 Re-Randomizable Threshold PKE

A re-randomizable threshold public key encryption (RTE) scheme is a central build-
ing block for our protocols. We use the definition of RTEs from [36]. Intuitively, we
focus of the (n, n)-Threshold case, where n parties need to cooperate to decrypt the
ciphertexts. A RTE consists of a following tuple of PPT algorithms:

– Setup(1κ) on input the security parameter κ outputs public parameters param,
which are an implicitly input to all the other algorithms and known by all parties.

– KeyGen(param) takes as input parameters param and outputs a public key pki and
a secret key ski.

– CombinePK(pk1, . . . , pkn) is a deterministic algorithm that takes as input a set of
public keys (pk1, . . . , pkn) and outputs a combined public key pk.

– Enc(pk,m) takes as input a public key pk and a plaintext message m, and outputs
a ciphertext ct.
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– ReRand(pk, ct) is a re-randomization algorithm that takes as input a public key pk
and a ciphertext ct, and outputs a re-randomized ciphertext ct′.

– ShareDec(ski, ct) is a deterministic algorithm that takes as input a secret key share
ski and a ciphertext ct, and outputs a decryption share di.

– ShareCombine(ct, d1, . . . , dn) is a deterministic decryption share combining algo-
rithm that takes as input a ciphertext ct and a set of decryption shares (d1, . . . ,
dn), and outputs a plaintext message m.

– SimshareDec (skj , ct,m,m
′) is a deterministic algorithm that takes as input a se-

cret key share skj (for j ∈ {1, . . . , n}), a ciphertext ct = Enc(pk,m), a message m
and an alternative message m′, outputting a decryption share dj such that m′ ←
ShareCombine(ct, d1, . . . , dn), where di ← ShareDec(ski, ct) for i ∈ {1, . . . , n} \ j.
Intuitively, given a ciphertext encrypting a known message and an alternative mes-
sage, this algorithm outputs a decryption share that results in the ciphertext being
decrypted to the alternative message.

– CombineSK(sk1, . . . , skn) is a deterministic algorithm that takes as input a set of
secret key shares (sk1, . . . , skn) and outputs a combined secret key sk.

– Dec(sk, ct) is a deterministic decryption algorithm that takes as input a ciphertext
ct and a secret key sk, and outputs a message m.

– Trans(ct, {ski}i∈{1,...,n}\j) is a deterministic algorithm that takes as input a cipher-

text ct and a set of secret keys {ski}i∈{1,...,n}\j , and outputs a ciphertext ct′.

We define the security of such schemes as in [36]. Notice that we do not use
algorithms CombineSK, Dec and Trans in our protocol or proofs but they are necessary
for defining the scheme’s security.

Definition 1. RTE is a secure re-randomizable threshold public key encryption if the
following properties hold:

Key Combination Correctness: For every valid set of public/secret keys pairs
{pki, ski}i∈{1,...,n}, for pk← CombinePK(pk1, . . . , pkn) and sk← CombineSK(sk1, . . . ,
skn), the pair (pk, sk) is a valid key pair. Moreover, for every message m in RTE’s

message space, ct
$← Enc(pk,m) and di ← ShareDec(ski, ct), it holds that Dec(sk, ct) =

ShareCombine(ct, d1, . . . , dn).

IND-CPA Security: The public key cryptosystem PKE = (Setup,KeyGen,Enc,Dec)
is IND-CPA secure.

Ciphertext transformative indistinguishability: For every valid set of pairs of
keys {pki, ski}i∈{1,...,n} of public/secret key pairs, pk ← CombinePK(pk1, . . . , pkn)
and sk ← CombineSK(sk1, . . . , skn), and for every message m in RTE’s message

space, ciphertext ct
$← Enc(pkj ,m) it holds that (param,Trans(ct, {ski}i∈{1,...,n}\j) ≈c

(param,Enc(pk,m)) for every j ∈ {1, . . . , n}.

Unlinkability: Let the experiment UnlinkA(1κ) be executed with an adversary A =
(A1,A2,A3):

1. Generate param
$← Setup(1κ) and (pki, ski)

$← KeyGen(param) for i = 1, . . . , n;
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2. (I, st1)
$← A1(param) outputs a set I ⊂ {1, . . . , n} of up to n− 1 corrupted indices

and state st1;

3. (ct0, ct1, st2)
$← A2({pki}i∈{1,...,n}, {skj}j∈I , st1);

4. Choose b
$← {0, 1} and compute ct′

$← ReRand(pk, ctb), where the public key pk←
CombinePK(pk1, . . . , pkn);

5. For b′
$← A3(ct′, st2), return 1 if b′ = b, else return 0.

For any PPT adversary A, it should hold that AdvUnlinkA(1κ) ∈ negl(1κ), where

AdvUnlinkA(1κ) =

∣∣∣∣Pr [UnlinkA(1κ) = 1 ]− 1

2

∣∣∣∣ .
Share-simulation indistinguishability: For every valid set of public/secret keys
{pki, ski}i∈{1,...,n}, and pk ← CombinePK(pk1, . . . , pkn), for every plaintext messages

m,m′ in the message space of RTE, ciphertext ct
$← Enc(pk,m), index j ∈ {1, . . . , n}

and every decryption share dj ← ShareDec(skj , ct), the following holds

(param, ct,SimshareDec(skj , ct,m,m
′)) ≈c (param, ct, dj).

A.2 NIZKs for Relations over RTE

We employ a number of non-interactive zero-knowledge proofs (NIZKs) proofs of
membership for different relations, which we instantiate in the random oracle model
(ROM) for the sake of efficiency. We adopt the notation and security definitions
for NIZKs of [36, 35]. A scheme NIZKR for relation R is a tuple of algorithms
(Prov,Verify,Sim,Ext) such that: Prov is a PPT algorithm that takes as input (x,w) ∈
R and outputs a proof π; Verify is a deterministic polynomial time algorithm that
takes as input (x, π) and outputs 1 if the proof is valid and 0 otherwise; Sim is a PPT
algorithm that takes as input an statement x and outputs a proof π and auxiliary
string aux; Ext is a deterministic polynomial time algorithm that takes as input a pair
(x, π) and outputs a witness w.

We need a number of NIZKs for relations over the RTE scheme we employ. For the
sake of clarity, we define the generic relations for which we need to prove statements
in zero-knowledge and describe our protocols and simulators in terms of those.

R1 - Correctness of public key share: This relation shows that the prover knows
the randomness used for generating a public/secret key pair (pki, ski) and the secret
key ski.

πR1

$← NIZKR1
.Prov

{
(pki), (ri, ski) :

(pki, ski)← KeyGen(param; ri)

}
.

R2 - Correctness of decryption share: This relation shows that the prover used
the secret key ski corresponding to its public key pki for computing a decryption share
di of a ciphertext ct.

πR2

$← NIZKR2 .Prov

 (pki, ct, di), (ri, ski) :
(pki, ski)← KeyGen(param; ri),

di ← ShareDec(ski, ct)

 .
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R3 - Correctness of shuffle: This relation shows that the prover correctly shuffled a
set of ciphertexts (ct1, . . . , ctm) by re-randomizing them with randomness (r1, . . . , rm)
and permuting them with a permutation Π.

πR3
← NIZKR3

.Prov


(pk, (ct1, . . . , ctm), (ct′1, . . . ,
ct′m)), (Π, (r1, . . . , rm)) :
∀i ∈ {1, . . . ,m},

ct′Π(i) ← ReRand(pk, cti; ri)

 .

Definition 2. A NIZK Proof of Membership scheme in the ROM for relation R,
NIZKRO

R , is a tuple of algorithms (ProvRO,VerifyRO,SimRO,ExtRO) with access to a
random oracle RO such that the following hold:

– Completeness: For any (x,w) ∈ R,

Pr

[
ρ

$← {0, 1}κ ; π ← ProvRO(x,w; ρ) :

VerifyRO(x, π) = 0

]
≤ negl(κ).

– Zero-Knowledge: Let oracles O1 return π on queries (x,w) ∈ R for (π, aux) ←
SimO(x) and O2 return π ← ProvRO(x,w; ρ) for ρ

$← {0, 1}κ. For any PPT distin-
guisher A, we have ∣∣∣∣ Pr

[
ARO,O1(1κ) = 1

]
−Pr

[
ARO,O2(1κ) = 1

] ∣∣∣∣ ≤ negl(κ).

– Soundness: For all adversaries A,

Pr

[
(x, π)← ARO(1κ) ; x /∈ LR
∧ VerifyRO(x, π) = 1

]
≤ negl(κ).

Since all of the NIZKs used in our protocols are in the (Global) ROM, we omit RO
in the superscript NIZKRO. We denote the individual algorithms (Prov,Verify,Sim) of
a NIZK Proof of Membership NIZKR for relation R by NIZKR.Prov, NIZKR.Verify,
NIZKR.Sim.

A.3 Universal Composability

We present a brief description of the UC framework originally given in [16] and re-
fer interested readers to [11] for further details. In this framework, protocol security
is analyzed under the real-world/ideal-world paradigm, i.e., by comparing the real
world execution of a protocol with an ideal world interaction with the primitive that
it implements. The model includes a composition theorem, that basically states that
UC secure protocols can be arbitrarily composed with each other without any security
compromises. This desirable property not only allows UC secure protocols to effec-
tively serve as building blocks for complex applications but also guarantees security in
practical environments, where several protocols (or individual instances of protocols)
are executed in parallel, such as the Internet.

In the UC framework, the entities involved in both the real and ideal world execu-
tions are modeled as PPT Interactive Turing Machines (ITM) that receive and deliver
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messages through their input and output tapes, respectively. In the ideal world exe-
cution, dummy parties (possibly controlled by an ideal adversary S referred to as the
simulator) interact directly with the ideal functionality F , which works as a trusted
third party that computes the desired primitive. In the real world execution, several
parties (possibly corrupted by a real world adversary A) interact with each other by
means of a protocol π that realizes the ideal functionality. The real and ideal execu-
tions are controlled by the environment Z, an entity that delivers inputs and reads
the outputs of the individual parties, the adversary A and the simulator S. After
a real or ideal execution, Z outputs a bit, which is considered as the output of the
execution. The rationale behind this framework lies in showing that the environment
Z (that represents everything that happens outside of the protocol execution) is not
able to efficiently distinguish between the real and ideal executions, thus implying
that the real world protocol is as secure as the ideal functionality.

We denote by REALπ,A,Z(κ, z, r̄) the output of the environment Z in the real-
world execution of a protocol π between n parties with an adversary A under secu-
rity parameter κ, input z and randomness r̄ = (rZ , rA, rP1 , . . . , rPn), where (z, rZ),
rA and rPi

are respectively related to Z, A and party i. Analogously, we denote
by IDEALF,S,Z(κ, z, r̄) the output of the environment in the ideal interaction be-
tween the simulator S and the ideal functionality F under security parameter κ,
input z and randomness r̄ = (rZ , rS , rF ), where (z, rZ), rS and rF are respectively
related to Z, S and F . The real world execution and the ideal executions are re-
spectively represented by the ensembles REALπ,A,Z = {REALπ,A,Z(κ, z, r̄)}κ∈N and
IDEALF,S,Z = {IDEALF,S,Z(κ, z, r̄)}κ∈N with z ∈ {0, 1}∗ and a uniformly chosen r̄.

In addition to these two models of computation, the UC framework also considers
the G-hybrid world, where the computation proceeds as in the real-world with the ad-
ditional assumption that the parties have access to an auxiliary ideal functionality G.
In this model, honest parties do not communicate with the ideal functionality directly,
but instead the adversary delivers all the messages to and from the ideal functionality.
We consider the communication channels to be ideally authenticated, so that the ad-
versary may read but not modify these messages. Unlike messages exchanged between
parties, which can be read by the adversary, the messages exchanged between parties
and the ideal functionality are divided into a public header and a private header. The
public header can be read by the adversary and contains non-sensitive information
(such as session identifiers, type of message, sender and receiver). On the other hand,
the private header cannot be read by the adversary and contains information such
as the parties’ private inputs. We denote the ensemble of environment outputs that
represents an execution of a protocol π in a G-hybrid model as HYBRIDGπ,A,Z (defined
analogously to REALπ,A,Z). UC security is then formally defined as:

Definition 3. An n-party (n ∈ N) protocol π is said to UC-realize an ideal function-
ality F in the G-hybrid model if, for every adversary A, there exists a simulator S
such that, for every environment Z, the following relation holds:

IDEALF,S,Z ≈c HYBRIDGπ,A,Z .

We say that a protocol is statistically secure, if the same holds for all Z with un-
bounded computing power.
Adversarial Model: We consider malicious adversaries, who can arbitrarily deviate
from the protocol. We consider static adversaries, meaning that the adversary has to
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corrupt parties before execution starts and the corrupted (or honest) parties remain
so throughout the execution.

Setup Assumptions: It is known that UC-secure two-party and multiparty proto-
cols for non-trivial functionalities require a setup assumption [14]. The main setup
assumption for our work is the random oracle model [5] modelled as the GrpoRO-hybrid
model (desicussed in Appendix B). In order to obtain a generic and modular con-
struction, we write our protocols in terms of a digital signature functionality FDSIG,
described in Figure 5 as defined in [12], and a smart contract functionality (defined
in Section 3). It is also known that EUF-CMA signature schemes realize FDSIG. Notice
that this fact is used to show that our protocols can be realized based on practical
digital signature schemes such DSA and ECDSA.

Functionality FDSIG

FDSIG interacts with an ideal adversary S, parties P1, . . . , Pn and a signer Ps as follows:

– Key Generation Upon receiving a message (keygen, sid) from some party Ps, ver-
ify that sid = (Ps, sid

′) for some sid′. If not, then ignore the request. Else, hand
(keygen, sid) to the adversary S. Upon receiving (verification key, sid, SIG.vk)
from S, output (verification key, sid, SIG.vk) to Ps, and record the pair (Ps, SIG.vk).

– Signature Generation Upon receiving a message (sign, sid,m) from Ps, verify
that sid = (Ps, sid

′) for some sid′ . If not, then ignore the request. Else, send
(sign, sid,m) to S. Upon receiving (signature, sid,m, σ) from S, verify that no entry
(m,σ,SIG.vk, 0) is recorded. If it is, then output an error message to Ps and halt. Else,
output (signature, sid,m, σ) to Ps, and record the entry (m,σ, v, 1).

– Signature Verification Upon receiving a message (verify, sid,m, σ,SIG.vk′)
from some party Pi, hand (verify, sid,m, σ,SIG.vk′) to S. Upon receiving
(verified, sid,m, φ) from S do:

1. If SIG.vk′ = SIG.vk and the entry (m,σ,SIG.vk, 1) is recorded, then set f = 1.
(This condition guarantees completeness: If the verification key SIG.vk′ is the reg-
istered one and σ is a legitimately generated signature for m, then the verification
succeeds.)

2. Else, if SIG.vk′ = SIG.vk, the signer Ps is not corrupted, and no entry
(m,σ′,SIG.vk, 1) for any σ′ is recorded, then set f = 0 and record the entry
(m,σ,SIG.vk, 0). (This condition guarantees unforgeability: If SIG.vk′ is the reg-
istered one, the signer is not corrupted, and never signed m, then the verification
fails.)

3. Else, if there is an entry (m,σ, SIG.vk′, f ′) recorded, then let f = f ′. (This condi-
tion guarantees consistency: All verification requests with identical parameters will
result in the same answer.)

4. Else, let f = φ and record the entry (m,σ,SIG.vk′, φ).

Output (verified, sid,m, f) to Pi.

Fig. 5. Functionality FDSIG.
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B Instantianting NIZKs in the Global Random Oracle Model

We will rely on a Fiat-Shamit style transformation to instantiate NIZK proofs of
membership for relations R1, R2 and R3 from special honest verifier zero-knowledge
proof protocols for these relations. It is well known that the Fiat-Shamir transfor-
mation does not work in general in the UC framework due to its fundamental use of
rewinding and programming of the random oracle. However, for the specific relations
we want to prove in zero knowledge, as we are not interested in obtaining proofs of
knowledge, we can use a Fiat-Shamir style transformation to obtain NIZK proofs of
membership without requiring rewinding as long as the simulator can program the
random oracle specifically on points that it randomly sampled (and are thus unknown
to the adversary or the environment). While the original formulations of the Global
Random Oracle model by Canetti et al. [13, 15] do not allow for any form of pro-
grammability, a recent result by Camenisch et al. [9] shows that a global random
oracle can be programmed in a restricted form that is sufficient for for instantiating
these NIZKs. The the restricted programmable and observable global random oracle
model of [9] is formally defined by functionality GrpoRO.

Basically, in the restricted programmable and observable global random oracle
model of [9], the simulator can program the random oracle on points sampled uni-
formly at random in its execution with an internal copy of the adversary while keep-
ing the simulation indistinguishable from a real execution for the environment. Ca-
menisch et al. use this property to prove the security of cannonical commitment
schemes where the message and uniform randomness are given as input to the random
oracle in order to obtain the commitment as the resulting output. In this construction,
in order to open a commitment to an arbitrary message, the simulator must program
the random oracle in a random point that is unknown to the adversary and the envi-
ronment (i.e. the message obtained from the commitment functionality concatenated
with the randomness). Similarly, this property can be used to simulate NIZK proofs
of membership obtained through the Fiat-Shamir transformation.

Notice that the Fiat-Shamir transformation consists in obtaining the challenge by
querying the random oracle on the first message of a sigma protocol concatenated
with the public information available to both the prover and verifier. The prover first
generates the first message of the protocol, obtains the challenge from the random
oracle and uses this challenge to generate the last message of the protocol, providing
the first as the last messages as a NIZK. The verifier can check the validity of this
proof by querying the random oracle on the first message provided by the prover
concatenated with the public information, checking that the response is valid with
respect to the response obtained from the random oracle. If the challenge can be
arbitrarily chosen by the prover, it can craft first and last messages that form an
accepting transcript together with the arbitrary challenge. The prover is precluded
from doing so since it cannot predict the output of the random oracle. The simulator
can program the random oracle in order to obtain such an arbitrary challenge and
generate a proof without knwoing a witness. On the other hand, extracting a witness
from such a NIZK requires the simulator to follow the steps of the sigma protocol
simulator, rewinding the prover a number of times, which is not compatible with the
UC framework.
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Functionality GrpoRO

GrpoRO is parameterized by an output size function `, keeps initally empty lists ListH,prog
and operates as follows:

– Query: On input (HashQuery,m) from a machine (P, sid) or from the adversary, parse
m as (s,m′ and proceed as follows:

• Look up h such that (m,h) ∈ ListH. If no such h exists, sample h
$← {0, 1}`(n) and

set ListH = ListH ∪ {(m,h)}.
• If this query is made by the adverssary, or if s 6= sid, then add (s,m′, h) to the

(initally empty) list of illegitimate queries Qs.
• Output (HashConfirm, h) to the caller.

– Observe: On input (Observe, sid) from the adversary, if Qsid does not exist yet, set
Qsid = ∅. Output (ListObserve,Qsid) to the adversary.

– Program: O input (ProgramRO,m, h) with h ∈ {0, 1}`(n) from the adversary, ignore
the input if there exists h′ ∈ {0, 1}`(n) such that (m,h′) ∈ ListH and h 6= h′. Otherwise,
set ListH = ListH ∪ {(m,h)} and prog = prog ∪ {m} and output (ProgramConfirm) to
the adversary.

– IsProgrammed: On input (IsProgrammed,m) from a machine (P, sid) or from the
adversary, if the input was given by (P, sid), parse m as (s,m′ and, if s 6= sid, ig-
nore this input. Set b = 1 if m ∈ mathsfprog (and b = 0 otherwise) and output
(IsProgrammed, b) to the caller.

Fig. 6. Functionality GrpoRO.

In our case, we construct NIZK proofs of membership, where only the soundness
and zero-knowledge properties are needed without requiring any witness extraction
(i.e. the proof of knowledge property). In the case of the DDH based protocols we
employ in Section 3 for proving relations R1, R2 and R3, the first message of the
protocol can be randomly chosen by the simulator. Hence, in order to simulate a proof,
the simulator only needs to program the random oracle on a random point, setting
the challenge to an arbitrary value that allows it to craft the last message to form an
accepting transcript. Similarly to the case of random oracle based commitments in the
restricted programmable and observable global random oracle model, the simulator
fails if the environment queries the random oracle in the random point that must be
programmed, which happens with negligible probability since the simulator chooses
this point at random.

Notice that the NIZK for relation R3 is based on the protocol of [4], which requires
a common reference string (CRS) that consists of random group elements such that
the discrete logarithm of these elements in a given base is unknown. However, such a
CRS can be generated by standard coin tossing based on UC-secure commitments in
the restricted programmable and observable global random oracle model, which have
been efficiently constructed in [9].

C Formalization of Secure Card Games

In this section we formalize the notion of a secure card game. Our intention is to
capture a large variety of card games, therefore we opt to formalize it using a func-
tionality FCG that has an embedded program GR that expresses the rules of the game
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under consideration. FCG offers procedures to check-in and check-out the players into
the game, to create cards, to shuffle a specified set of cards, to open cards both to
the public as well as privately to one player. Additionally, it offers a channel for GR
to communicate with the players. It also offers a mechanism to financially compen-
sate the honest players in case that some adversarial player misbehaves or aborts. GR
mediates the execution of the game between the players and performs actions such
as: (1) requesting the operations with cards; (2) determining who is the next player
that should move and requesting an action from it; (3) processing the outcomes of
the players actions and of the operations with cards; (4) updating the players’ money
balance and bet amounts; (5) invoking the check-out procedure to allow one player to
leave the game; (6) requesting the compensation mechanism to be executed if some
player does not respond in an appropriate way (the appropriate responses depend on
the specifics rules of the game, which are known to the players as well). Later on, the
game program GR will also be used to parametrize the protocol, where it will inform
the players which card operations have to be executed for each step of the game.
Notice that we choose to only capture basic card operations and basic game financial
transactions in FCG. However, it can be easily combined with other functionalities
that capture further operations that can come in handy in different games and that
can be UC realized with cryptographic protocols. In this case, GR can also request the
players to perform operations related to the extra functionalities aggregated into FCG.
A prime example of such an extension to FCG is adding a coin tossing functionality
(easily and efficiently UC-realized in the random oracle model), which can provide
players with a common source of uniform randomness for actions such as choosing
the order in which players act at random. The functionality FCG that captures secure
card games is described below:

D Security Analysis

We analyze the security of πCG in the UC framework by constructing a simulator
such that any environment has a negligible chance to distinguish between an ideal
world execution with the simulator and FCG and a real world execution of πCG with
an adversary. The main idea behind our simulator is to replace all ciphertexts repre-
senting cards by ciphertexts containing a known plaintext message. It does that by
using the simulator of NIZKR3

to generate a simulated proof of correct shuffle given
arbitrary ciphertexts (on known messages) without being caught by the other parties.
In the private and public card opening procedures, when the simulator learns the
value of the opened card from FCG, it uses the decryption share simulation algorithm
SimShareDec along with the simulator of NIZKR2 to generate a decryption share such
that the ciphertext representing that card is decrypted to the intended card value.
The security of Protocol πCG is formally captured by the following theorem:

Theorem 1. Let RTE be a secure re-randomizable threshold public-key encryption
scheme as defined in Appendix A.1. Let NIZKRi

= (Prov,Verify,Sim,Ext) be a NIZK
Proof of Membership scheme for i ∈ {1, 2, 3}, and the relation Ri as defined in Ap-
pendix A.2. For every static active adversary A who corrupts at most n − 1 parties,
there exists a simulator S such that, for every environment Z, the following relation
holds:
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Functionality FCG (First Part)

The functionality is executed with players P1, . . . ,Pn and is parameterized by a timeout
limit τ , and the values of the initial stake t, the security deposit d and of the compensa-
tion q. There is an embedded program GR that represents the rules of the game and is
responsible for mediating the execution: it requests actions from the players, processes
their answers, and can invoke the procedures of FCG. FCG provides a check-in procedure
that is run in the beginning of the execution, a check-out procedure that allows a player
to leave the game (which is requested by the player via GR) and a compensation proce-
dure that is invoked by GR if some player misbehaves/aborts. It also provides a channel
for GR to request public actions from the players and card operations as described below.
GR is also responsible for updating the vectors balance and bets. Whenever a message is
sent to S for confirmation or action selection, S should answer, but can always answers
(abort, sid), in which case the compensation procedure is executed; this option will not
be explicitly mentioned in the functionality description henceforth.

– Check-in: Executed during the initialization, it waits for a check-in message
(checkin, sid, coins(d + t)) from each Pi and sends (checkedin, sid,Pi) to the re-
maining players and GR. If some player fails to check-in within the timeout limit τ ,
then allow the players that checked-in to dropout and reclaim their coins. Initialize a
balance vector as balance = (t, . . . , t) and a bets vector as bets = (0, . . . , 0).

– Check-out: Whenever GR requests the check-out of the players with payouts
specified by the vector payout, send (checkout, sid, payout) to S. If S answers
(checkout, sid, payout), send the message (payout, sid,Pi, coins(d + payout[i])) to
each Pi and stop the execution.

– Compensation: This procedure is triggered whenever S answers a request for con-
firmation of an action with (abort, sid). For each active honest player Pi, send him
(compensation, sid, coins(d+q+balance[i]+bets[i])). Send the remaining locked coins
to S and stop the execution.

– Request Action: Whenever GR requests an action with description act− desc from
Pi, send a message (action, sid,Pi, act − desc) to the players. Upon receiving an
answer (action-rsp, sid,Pi, act − rsp) from Pi, forward it to all other players and
GR.

– Create Card: Whenever GR requests the creation of a card with value v, choose a
new identifier id, store the card (id, v) and send the message (newcard, sid, id, v) to
all players and GR.

– Shuffle Cards: Whenever GR requests the cards with identifiers (id1, . . . , idm)
to be shuffled, send the message (shuffle, sid, id1, . . . , idm) to S. If S answers
(shuffle, sid, id1, . . . , idm), a random permutation Π is applied to the correspond-
ing values (v1, . . . , vm) to obtain the updated cards (id1, v

′
1), . . . , (idm, v

′
m) such that

(v′1, . . . , v
′
m) = Π(v1, . . . , vm). Send (shuffled, sid, id1, . . . , idm) to all players and GR.

– Open Private Card: Whenever GR requests to reveal the card with identifier id
to Pi, send the message (card, sid,Pi, id) to S. If S answers (card, sid,Pi, id), read
(id, v) from the memory and send the message (card, sid, id, v) to Pi.

– Open Public Card: Whenever GR requests to reveal the card (id, v) in public, read
the card (id, v) from the memory and send the message (card, sid, id, v) to S. If S
answers (card, sid, id, v), forward this message to all players and GR.

Fig. 7. Functionality FCG (First Part).

IDEALFCG,S,Z ≈c HYBRID
GrpoRO,FDSIG,FSC

πCG,A,Z .
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Functionality FCG (Second Part)

– Shuffle Private Cards: Whenever GR requests a set of private
cards (id1, v1), . . . , (idm, vm) from player Pi to be shuffled, send the
message (private-shuffle, sid,Pi, id1, . . . , idm) to S. If S answers
(private-shuffle, sid,Pi, id1, . . . , idm), a random permutation (v′1, . . . , v

′
m) =

Π(v1, . . . , vm) is applied to the values (v1, . . . , vm) to obtain the updated cards
(id1, v

′
m), . . . , (idm, v

′
m). Send (private-shuffled, sid, (id1, v

′
1), . . . , (idm, v

′
m)) to Pi

and the message (private-shuffled, sid, id1, . . . , idm) to the other players and GR.

Fig. 8. Functionality FCG (Second Part).

Proof. In order to prove the security of πCG, we construct a simulator S such that no
environment Z can distinguish between interactions with an adversary A in the real
world and with S in the ideal world. S writes all the messages received from Z in A’s
input tape, simulating A’s environment. Also, S writes all messages from A’s output
tape to its own output tape, forwarding them to Z.

We now describe the simulator S. Let Ph denote one of honest parties (any ar-
bitrary one), which we have special procedures during the simulation. As in the pro-
tocol, the simulator S is parametrized by a security parameter 1κ, RTE parameters
param← Setup(1κ), a timeout limit τ , the values of the initial stake t, the compensa-
tion q, the security deposit d ≥ (n−1)q and an embedded program GR that represents
the rules of the game. S simulates an execution with an internal copy of the adversary
A (that controls the malicious parties), and generates the protocol messages from the
honest parties. S proceeds as follows to simulate each procedure of Protocol πCG:

– Simulating FRO: S simulates the answers to the random oracle queries from A
exactly as FRO would (and stores the lists of queries/answers), except when stated
otherwise in S’s description.

– Simulating FDSIG: S simulates queries from A to FDSIG exactly as FDSIG would.
– Simulating FSC: S simulates queries from A to FSC exactly as FSC would.
– Checkpoint Witnesses, Recovery Trigger, Tracking Balance and Bets,

Executing Actions, Check-in, Create Card, Check-out, Compensation:
S simulates the execution of the respective procedures of πCG for the honest parties.
If the procedure finishes correctly in this internal simulation, then S forwards the
necessary messages to FCG to let it continue.

– Recovery: When the recovery phase is activated, S proceeds by following the
steps of an honest party in πCG by sending its most up to date checkpoint and
current procedure witnesses to the simulated FSC and proceeding by sending the
next messages of the honestly simulated execution of πCG to FSC instead of sending
them directly to A. However, when a card operation (shuffling or opening of cards)
is required while execution is mediated by the simulated FSC, the messages required
by such operation are simulated as described below. If the recovery phase succeeds,
S sends FCG a message allowing the execution to proceed normally and, if it fails, S
sends a failure message to FCG notifying that the operation has failed as described
below in the steps for simulating each operation. In case of a failure, S proceeds to
simulate the compensation phase.

– Shuffle Cards: In this procedure, S will replace all ciphertexts representing cards
(i.e. encrypting a card number) with ciphertexts encrypting 1, in such a way that
S later knows the encrypted values and can generate decryption shares that result
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in decrypting each ciphertext to an arbitrary value. Upon receiving the message
(shuffle, sid, id1, . . . , idm) from FCG, S proceeds as follows to simulate each round
of the shuffle cards procedure:

• Each honest party define ct0id1 , . . . , ct
0
idm

using the procedures from πCG.

• Upon receiving a message (shuffle, sid,Pi, id1, . . . , idm, ctiid1 , . . . , ct
i
idm
, πi−1R3

) on

behalf of Pi from A, S verifies that πiR3
is valid using the steps of Protocol πCG

that the honest parties would use. If this check fails or the message from the
next player that is supposed to shuffle is not received before the timeout limit
τ , S proceeds to the recovery procedure. If the recovery procedure fails, S sends
(abort, sid) to FCG and proceeds to the compensation procedure. If the recovery
procedure succeeds, proceed with the simulation.
• If it is the turn of an honest party (except Ph) to shuffle, apart from performing

the checks of the previous step, S simulates the shuffle procedure of πCG and
sends the resulting messages to A.
• If it is Ph’s turn to shuffle, apart from performing the checks of the first step,
S computes ciphertexts cthidj ← Enc(pk, 1), for j = 1, . . . ,m (with fresh ran-

domness for each ciphertext). Next, S generates a proof of shuffle correctness
πhR3

by executing NIZKR3 .Sim(pk, (cth−1id1
, . . . , cth−1idm

), (cthid1 , . . . , ct
h
idm

)) and sends

(shuffle, sid,Ph, id1, . . . , idm, cthid1 , . . . , ct
h
idm
, πhR3

) to A.

If all rounds of the shuffle cards procedure are successfully completed, S sends
(shuffle, sid, id1, . . . , idm) to FCG.

– Shuffle Private Cards: In this procedure, S relays corrupted players’ private
shuffling requests to FCG and simulates the honest party’s private shuffling requests.
Upon receiving from FCG (private-shuffle, sid,Pi, id1, . . . , idm), S proceeds as
follows:

• If Pi is corrupted, S waits for a message (privshuffle, sid,Pi, id1, . . . , idm,
ct′id1 , . . . , ct

′
idm
, πiR3

) from PAi and verifies πiR3
by checking the verification proce-

dure NIZKR3
.Verify((pk, (ctid1 , . . . , ctidm), (ct′id1 , . . . , ct

′
idm

)), πiR3
) = 1, where the

tuple (ctid1 , . . . , ctidm) are the corresponding ciphertexts before the private shuffle.
If this check succeeds, S sends the message (private-shuffle, sid,Pi, id1, . . . ,
idm) to FCG. If this check fails or the message is not received before the timeout
limit τ , S proceeds to the recovery procedure. If the recovery procedure fails, S
proceeds to the compensation procedure after sending (abort, sid) to FCG. If the
recovery procedure succeeds, S sends (private-shuffle, sid,Pi, id1, . . . , idm) to
FCG.
• If Pi is honest, S simulates the honest steps of πCG for doing a private shuffle

and sends (privshuffle, sid,Ph, id1, . . . , idm, ct′id1 , . . . , ct
′
idm
, πhR3

) to A. Next, S
sends to FCG the message (private-shuffle, sid,Pi, id1, . . . , idm) .

– Open Private Card: Upon receiving a message (card, sid,Pi, id) from FCG, S
proceeds as follows:

• If Pi is corrupted, S sends (card, sid,Pi, id) to FCG, obtaining (card, sid,Pi, id, v)
as answer. Next, S simulates an opening of the private card with id represented
by ciphertext ctid towards party Pi in such a way that decrypting ctid results in v.
For all honest parties other than Ph, S generates the decryption shares honestly
using the procedures of πCG and send the resulting messages to A. Additionally, S
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generates the decryption share of Ph, dh, using SimShareDec such that decrypting
ctid yields v. Next, S generates a simulated NIZK πhR2

showing that the decryp-
tion share dh was correctly computed by executing NIZKR2

.Sim(pkh, ctid, dh).
These simulated decryption share dh and proof πhR2

are recorded and reused if

the same ciphertext is opened again. S sends (opencard, sid,Ph, id, dh, πhR2
) to

A.
• If Pi is honest, S waits for messages (opencard, sid,Pj , id, dj , πjR2

) from each
malicious party Pj controlled by A. Upon receiving each of these messages, S
verifies πjR2

by checking that NIZKR2
.Verify((pkj , ctid, dj), π

j
R2

) = 1. If all of the

messages are received and all NIZKs πjR2
are valid, S sends (card, sid,Pi, id)

to FCG. If any of these messages is not received before the timeout limit τ or
any of the NIZKs πjR2

are invalid, S proceeds to the recovery procedure. If the
recovery procedure succeeds, S sends (card, sid,Pi, id) to FCG. Otherwise, S
sends (abort, sid) to FCG and proceeds to the compensation procedure.

– Open Public Card Upon receiving a message (card, sid, id, v) from FCG, S sim-
ulates an opening of the public card with id represented by ciphertext ctid towards
A in such a way that v is obtained, proceeding as follows:

• For all honest parties other than Ph, S generates the decryption shares honestly
using the procedures of πCG and send the resulting messages to A. Additionally, S
generates the decryption share of Ph, dh, using SimShareDec such that decrypting
ctid yields v. Next, S generates a simulated NIZK πhR2

showing that the decryp-
tion share dh was correctly computed by executing NIZKR2 .Sim(pkh, ctid, dh).
These simulated decryption share dh and proof πhR2

are recorded and reused if

the same ciphertext is opened again. S sends (opencard, sid,Ph, id, dh, πhR2
) to

A.
• S waits for messages (opencard, sid,Pj , id, dj , πjR2

) from each malicious party

Pj controlled by A. Upon receiving these messages, S verifies πjR2
by checking

that NIZKR2
.Verify((pkj , ctid, dj), π

j
R2

) = 1. If all of the messages are received

and all NIZKs πjR2
are valid, S sends (card, sid, id, v) to FCG. If any of these

messages is not received before the timeout limit τ or any of the NIZKs πjR2
are

invalid, S proceeds to the recovery procedure. If the recovery procedure succeeds,
S sends (card, sid, id, v) to FCG. Otherwise, S sends (abort, sid) to FCG and
proceeds to the compensation procedure.

Simulation Indistinguishability: Notice that the simulator S only deviates from a real
execution of Protocol πCG in the shuffle cards, shuffle private cards, open private card
and open public card procedures. In the case of the shuffle procedure, S acts exactly
as an honest party in a real execution of πCG except for when Ph is performing a
shuffling operation (i.e. rerandomizing the ciphertexts representing cards, permuting
them and generating proofs of shuffle correctness). In this case, S deviates from pro-
tocol execution by replacing the ciphertexts it receives from the previous party (or
A) by arbitrary ciphertexts containing the message 1 and generating a proof of shuf-
fle correctness πhR3

by running NIZKR3 .Sim(pk, (cth−1id1
, . . . , cth−1idm

), (cthid1 , . . . , ct
h
idm

)). If

the environment Z can distinguish an execution with ciphertexts cthidi ← Enc(pk, 1)
from an execution with the ciphertexts generated by an honest execution of πCG,
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it can be used to break the unlinkability or IND-CPA security properties of RTE,
since these ciphertexts are indistinguishable given these two properties. If Z can dis-
tinguish an execution with the proof of shuffle correctness πhR3

obtained by running

NIZKR3 .Sim(pk, (cth−1id1
, . . . , cth−1idm

), (cthid1 , . . . , ct
h
idm

)) from an execution with the proof
of shuffle correctness obtained by honestly running πCG, it can be used to break the
zero-knowledge property of NIZKR3

. In the case of the shuffle private cards proce-
dure, S instructs FCG to abort execution in case the adversary A provided an invalid
message, which also causes an abort in the real execution of πCG. In the cases of the
open public card and open private card procedures, S deviates from the protocol by
computing an arbitrary decryption share dh using SimShareDec such that decrypting
ctid yields v (obtained from FCG) and generating a simulated NIZK πhR2

showing that
the decryption share was correctly computed by running NIZKR2

.Sim(pkh, ctid, dh). If
the environment distinguishes an execution with the simulated decryption share dh
from an honest execution of πCG, it can be used to break the share-simualtion indistin-
guishability of RTE. If Z distinguishes an execution with the simulated NIZK πhR2

from
an honest execution of πCG, it can be used to break the zero-knowledge property of
NIZKR3

. Hence, the ideal execution with S is indistinguishable from a real execution of
πCG as long as RTE is a secure re-randomizable threshold public-key encryption scheme
as defined in Appendix A.1 and, for i ∈ {1, 2, 3}, NIZKRi

= (Prov,Verify,Sim,Ext) is
a NIZK proof of membership scheme for the relation Ri as defined in Appendix A.2.

E Unidentifiable Abort Situation on Wei’s Poker Protocol

We now present a situation which can be provoked by a user while performing the
poker protocol of Wei [32] that can make the protocol abort during the Shuffle phase
without allowing the detection of the misbehaving party. Before detailing the situ-
ation, we review the whole protocol and the two phases, namely the Wrap-A and
Reveal phases, which concern the unidentifiable abort situation. Later we describe
the situation itself and discuss its consequences.

Overview of the Protocol. Each player n, from a set of N players, selects a
private key xn via the [32, Protocol 2] and all N players share the joint private key

xs =
N∏
n=1

xn. Each face down card is represented by a tuple (ac, b) = (ac, axs), for a

joint computed a ∈ G as in [32, Protocol 5]. Moreover c is the public known value of
the card. Therefore a deck of M face down cards, which in [32] is named CR deck, is
the set of M tuples D = (ac11 , a

xs
1 ), · · · , (acMM , axs

M ).

The shuffle protocol receives as input the CR deck D, and a general description
of the procedure is as follows:

1. Wrap-A: All the M cards are jointly wrapped, among the N players, in order to
generate a wrapped deck.

2. Wrap-B: Similarly to the previous phase, N players encode each card with a
different wrapping method.

3. Shuffle: The main shuffle procedure is executed by each player via a random
permutation.
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4. Reveal: All the players broadcast the secret information used during the first two
phases.

5. Unwrapping: The players unwrap each card and verify the integrity of the shuf-
fling.

We focus on the two phases that can be manipulated by a malicious player.

The Wrap-A and Reveal Phases. The misbehaving player incorrectly performs
the Wrap-A phase. First, recall that during Wrap-A, Player n encodes each card
(am, bm) as

em,n = e1,n−1 · aλ1,n
m · bλ2,n

m · gλ3,n (1)

for randomly chosen values λ1,n, λ2,n and λ3,n picked by Player n and initial value
em,0 = 1G and g ∈ G. Each Player n broadcasts e1,n, . . . eM,n, however it keeps the
values λ1,n, λ2,n and λ3,n secret. They will be revealed during the Reveal phase.

During the Reveal phase, when the values for ((λ1,1, λ2,1, λ3,1), · · · , (λ1,N , λ2,N , λ3,N ))
are already known to all participants, therefore each player j will compute e′m,j and
e′m,N with the revealed values. The verification of the values is executed by [32, Pro-
cedure 21] which can be summarized by the following two equations:

em,j = a

j∑
n=1

λ1,n

m · b

j∑
n=1

λ2,n

m · g
j∑

n=1
λ3,n

, (2)

em,N = a

N∑
n=1

λ1,n

m · b

N∑
n=1

λ2,n

m · g
N∑

n=1
λ3,n

. (3)

Equations 2 and 3 are interpreted, respectively, as the checking for the value received
up until the turn of the j-th player, and the resulting value after all the players had
executed the Wrap-A procedure, that is, up to the point of the N -th Player.

The Sketch of the Abort Situation. An arbitrary Player i, which decides to
make another Player t to abort, can, during the Wrap-A phase, follow the protocol
and generate em,i values and broadcasts them with one small change in Equation
1. Instead of computing using the previous value em,i−1, it computes for its place
em,0 · em,1 . . . em,t−1 · em,t+1 . . . em,i−1 instead. Purposely excluding the item em,t of
the term, which is feasible since all players broadcast their values em,n on each turn. As
a result, the Equation 3 fails which leads the protocol to be aborted. More important
is that both equations do not reveal the identity of Player i.

Collusion and Penalties May Worsen the Situation. The constraint that the
target Player t has to compute before the attacker Player i, i.e. t < i, can be gen-
eralized for the situation that all other players are colluding against Player t. This
situation is in fact not an unlike scenario in online gambling. Take for example, the
case that in a poker room all players are in fact controlled by a simple player, except
one. In that case, the adversary can choose freely i.

In a scenario where penalties are applied, financial penalties in the sense of Andrychow-
icz et al. [2, 1], all colluding players could show that their computation are in fact
correct by presenting make their values λ1,n, λ2,n and λ3,n. Without a clear method of
verification other than the Equations 2 and 3 alone, the cheater cannot be identified.
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Or potentially only the single honest player can the penalized, which ultimately would
make the adversary, who controls the colluding players, collect the collateral of the
honest player.

This situation illustrates the consequences of the lack of formalization. More con-
cretely, despite the fact that the work by Bentov et al. [7] directly indicates the poker
protocol of [32] as an example of a use case of their ingenious framework, it is clear
that they do not properly integrate with each other. And the reason is that [7] does
not investigate the necessary properties of that composition. Here, a required fea-
ture of the poker protocol is the ability of identifying the malicious adversary (so the
penalties can be applied). A natural conjecture is that a more formal treatment of
the composability and security of these protocols would have spotted this gap.

m
n

2 4 6 8 10 12

52
220 G,
80 Zp

440 G,
160 Zp

660 G,
240 Zp

880 G,
320 Zp

1100 G,
400 Zp

1320 G,
480 Zp

104
430 G,
110 Zp

860 G,
220 Zp

1290 G,
330 Zp

1720 G,
440 Zp

2150 G,
550 Zp

2580 G,
660 Zp

156
640 G,
130 Zp

1280 G,
260 Zp

1920 G,
390 Zp

2560 G,
520 Zp

3200 G,
650 Zp

3840 G,
780 Zp

208
848 G,
150 Zp

1696 G,
300 Zp

2544 G,
450 Zp

3392 G,
600 Zp

4240 G,
750 Zp

5088 G,
900 Zp

260
1058 G,
170 Zp

2116 G,
340 Zp

3174 G,
510 Zp

4232 G,
680 Zp

5290 G,
850 Zp

6348 G,
1020 Zp

312
1266 G,
180 Zp

2532 G,
360 Zp

3798 G,
540 Zp

5064 G,
720 Zp

6330 G,
900 Zp

7596 G,
1080 Zp

Table 6. Concrete communication complexity of the Shuffle Cards phase of Royale for
practical numbers of players (n) and cards (m).

m
n

2 4 6 8 10 12

52
2028 G,
140 Zp

3796 G,
280 Zp

5564 G,
420 Zp

7332 G,
560 Zp

9100 G,
700 Zp

10868 G,
840 Zp

104
4056 G,
244 Zp

7592 G,
488 Zp

11128 G,
732 Zp

14664 G,
976 Zp

18200 G,
1220 Zp

21736 G,
1464 Zp

156
6084 G,
348 Zp

11388 G,
696 Zp

16692 G,
1044 Zp

21996 G,
1392 Zp

27300 G,
1740 Zp

32604 G,
2088 Zp

208
8112 G,
452 Zp

15184 G,
904 Zp

22256 G,
1356 Zp

29328 G,
1808 Zp

36400 G,
2260 Zp

43472 G,
2712 Zp

260
10140 G,
556 Zp

18980 G,
1112 Zp

27820 G,
1668 Zp

36660 G,
2224 Zp

45500 G,
2780 Zp

54340 G,
3336 Zp

312
12168 G,
660 Zp

22776 G,
1320 Zp

33384 G,
1980 Zp

43992 G,
2640 Zp

54600 G,
3300 Zp

65208 G,
3960 Zp

Table 7. Concrete communication complexity of the Shuffle Cards phase of Wei [32] for
practical numbers of players (n) and cards (m).
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n
m

52 104 156 208 260 312

2 624 1456 2184 2912 4160 4992

4 1024 2288 3432 4576 6240 7488

6 1456 3120 4680 6240 8320 9984

8 1872 3952 5928 7904 10400 12480

10 2288 4784 7176 9568 12480 14976

12 2704 5616 8424 11232 14560 17472
Table 8. Concrete computational complexity of the Shuffle Cards phase of Royale in terms
of modular exponentiations for practical numbers of players (n) and cards (m).

n
m

52 104 156 208 260 312

2 4241 8453 12665 16877 21089 25301

4 4245 8457 12669 16881 21093 25305

6 4249 8461 12673 16885 21097 25309

8 4253 8465 12677 16889 21101 25313

10 4257 8469 12681 16893 21105 25317

12 4261 8473 12685 16897 21109 25321

Table 9. Concrete computational complexity of the Shuffle Cards phase of Wei [32] in terms
of modular exponentiation for practical numbers of players (n) and cards (m).

F Further Efficiency Analysis

F.1 Concrete Complexity of Royale for Practical Parameters

Communication Complexity Estimates of the total number of elements of G and of
Zp exchanged between all players in the Shuffle Cards phase of Royale with numbers
of players and of cards commonly found in practical applications (i.e. popular games)
are presented in Table 6, while the protocol of Wei [32] is considered in Table 7.

Computational Complexity Estimates of the number of modular exponentiations re-
quired of each player in the Shuffle Cards phase of Royale with numbers of users and
of cards commonly found in practical applications (i.e. popular games) are presented
in Table 8, while the same estimates for the protocol of Wei [32] are presented in
Table 9.

F.2 Benchmark data for Open Public Card, Open Private Card and
Shuffle Private Cards Phases

The execution time and network communication for the Shuffle Private Cards phase
are presented in Table 13 and Table 10, respectively. The execution time is presented
as the sum of the local computation time required of each player and the network
Round Trip Time necessary for delivering this phase’s messages. Differently from
the Shuffle Cards procedure, player Pi only check the shuffle generated by Pj and
broadcast their signatures on the checkpoint witness, later verifying all signatures.
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n
m

52 104 208

2 6.93 KB 12.31 KB 20.43 KB

4 7.05 KB 12.43 KB 20.55 KB

6 7.18 KB 12.56 KB 20.68 KB

8 7.3 KB 12.68 KB 20.8 KB

10 7.43 KB 12.81 KB 20.93 KB

12 7.55 KB 12.93 KB 21.05 KB
Table 10. Network communication in the
Shuffle Private Cards phase.

n Time Communication

2 0.59 ms + 1 RTT 0.57 KB

4 1.00 ms + 1 RTT 1.89 KB

6 1.41 ms + 1 RTT 3.98 KB

8 1.82 ms + 1 RTT 6.82 KB

10 2.28 ms + 1 RTT 10.42 KB

12 2.64 ms + 1 RTT 14.78 KB
Table 11. Open Public Card Phase exe-
cution time.

n Drawer - Time Others - Time Communication

2 0.39 ms + 1 RTT 0.18 ms + 1 RTT 0.38 KB

4 0.8 ms + 1 RTT 0.18 ms + 1 RTT 1.52 KB

6 1.21 ms + 1 RTT 0.18 ms + 1 RTT 3.41 KB

8 1.62 ms + 1 RTT 0.18 ms + 1 RTT 6.06 KB

10 2.05 ms + 1 RTT 0.18 ms + 1 RTT 9.47 KB

12 2.44 ms + 1 RTT 0.18 ms + 1 RTT 13.64 KB

Table 12. Open Private Card Phase execution
time.

52
75.36 ms
+ 1 RTT

24.96 ms
+ 1 RTT

104
150.77 ms
+ 1 RTT

43.06 ms
+ 1 RTT

208
363.44 ms
+ 1 RTT

79.72 ms
+ 1 RTT

Table 13. Execution time for
the Shuffle Private Cards phase.

The execution time and network communication for the Open Public Card and Open
Private Card phases (opening one card) are presented respectively in Table 11 and 12.
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