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Abstract. Aiming at the increasing threat of fraud in electronic trans-
actions, so far researchers have already proposed many different models.
However, few previous studies take advantage of the sequential charac-
teristics of fraudulent transactions. In this paper, by statistical analysis
on a real dataset, we discover that partial-order sequential features are
able to reflect the intrinsic motivation of fraudsters, e.g., stealing the
money as quickly as possible before being intercepted. Based on the se-
quential features, we propose a novel model, SeqFD (Sequential feature
boosting Fraud Detector), to detect fraudulent transactions real-timely.
SeqFD applies a sliding time window strategy to aggregate the histori-
cal transactions. In specific, statistical sequential features are computed
based on the transactions within the time window. Thus, the raw dataset
can be transformed into a feature set. Several classification models are
evaluated on the feature set, and finally, XGBoost is validated to be a
fast, accurate and robust classifier which fits well with SeqFD. The ex-
periments on real dataset show that the proposed model reaches a 97.2%
TPR (True Positive Rate) when FPR (False Positive Rate) is less than
1%. Furthermore, the average time for giving a prediction is 1.5 millisec-
onds, which meets the real-time requirement in the industry.

Keywords: Fraudulent Transaction Detection · Statistical Sequential
Features · Sliding Time Window · Machine Learning.

1 Introduction

1.1 Background

Recent years, the huge development in e-commerce makes more and more people
shop online. The amount of money people spend online is also increasing. In
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China’s 2017 Double Eleven shopping festival, the total sales on Tmall4 reached
168.2 billion yuan [1]. However, this prosperity gives criminals chances to steal
money. According to the Nilson Report in October 2016, worldwide losses from
credit card fraud rose to 21 billion dollars in 2015, and will possibly reach 31
billion dollars by 2020 [13]. There is no doubt that it is meaningful to prevent
people’s properties from being stolen by fraudsters.

Although the criminals have various tricks, such as telephone fraud, Trojan
and pseudo base station [7], their unchanged goal is to steal money from peo-
ple’s bank accounts. It is spontaneous to think about how to prevent fraud when
fraud is presenting as fraudulent transactions. In the literature, fraud detection
methodologies using behavioral models are proposed [5, 2]. Behavioral models
mainly fall into two categories: individual behavioral models and crowd behav-
ioral models. For the individual models, concept drift [17] and lack-of-history are
the two main tough challenges faced by individual behavioral models. Basically,
concept drift means that a change in behavior may not be due to fraud[10]. The
lack-of-history problem is that a portion of customers do not have sufficient his-
torical records to depict their behavioral patterns. To handle concept drift, one
common solution is using the time window strategy [11] to neglect the old trans-
action and keep the model updated. This strategy will make the lack of history
problem severer, but if we set a larger time window to contain more records, it
contradicts the original intention to solve the problem of concept drift.

As a result, researchers are trying to build models based on crowd behavior. In
general, their models extract normal and fraud behavioral patterns from a large
number of customers. By measuring the differences between the two patterns,
effective features can be designed, then a classifier or an anomaly detector can be
trained. Crowd behavioral models alleviate the lack of history problem because
the history of active customers can be used to make up for that of inactive
customers. In the literature, many crowd behavioral models have been proposed
for e-transaction fraud detection. However, most of the previous studies have
one or more of the three problems below.

Lack of sequential features. In order to build a behavioral model, se-
quences of transactions are supposed to be taken into consideration rather than
isolated transactions. In order to avoid dimension disaster, transaction aggrega-
tion strategies are applied to build the behavioral models [18]. A common way
for transaction aggregation is to set up several time spans, and calculate the sta-
tistical values of spending for each time span, such as average and variance, as
aggregated features [6, 7]. However, in previous studies, the aggregated features
do not contain information about the partial-order relationship between consec-
utive transactions. Thus they are not sequential features. By real data analysis,
we find out that the sequential features are strongly correlated with fraud. In
Section 2 this will be explained in detail.

Lack of efficiency tests. Recent studies also tried to implement more com-
plex models, such as deep learning models, to detect fraudulent transactions.
For example, CNN (Convolutional Neural Network) is used for credit card fraud

4 Tmall is a Chinese-language website for business-to-consumer (B2C) online retail
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detection in recent studies [12, 6]. However, most of them ignored the efficiency
test. Deep learning models are probably not fast enough to meet the require-
ment of efficiency, because nowadays a deep learning model usually contains at
least hundreds of thousands of units [8], needs GPUs and parallelized clusters
to compute. As a result, both the training and predicting process could take a
long time. On the contrary, banks usually require their fraud detection systems
to give a response in a couple of milliseconds, and the training time should also
be as short as possible.

Lack of real dataset. Banks are usually very sensitive to the confidentiality
of their data, this makes the publication of a real electronic transaction dataset
nearly impossible [16]. Therefore, some previous studies used simulated datasets
to train and test their models. Nevertheless, the results obtained from simulated
datasets might be inconvincible. In addition, some of the previous studies which
used simulated dataset employed Accuracy as a performance indicator [4]. How-
ever, Accuracy is an unsuitable indicator in the area of fraud detection, because
real datasets are highly unbalanced [15]. This paper applies TPR (True Positive
Rate) and FPR (False Positive Rate) as the indicators.

1.2 Our Work

In this paper, by statistical analysis, we discover that sequential features are a
reflection of the intrinsic motivation of the fraudsters. We apply a sliding time
window to aggregate the simple sequential features into statistical sequential
features. Based on These features, we propose a real-time fraudulent transac-
tion detection model, SeqFD (Sequential feature boosting Fraud Detector). By
experiments on a real dataset, we validate that SeqFD can detect more than
97% fraudulent transactions but only disturb less than 1% normal transactions,
and it can give a prediction in 1.5 milliseconds on average. To choose a suitable
classifier, we conduct experiments on six machine learning models. Finally, XG-
Boost is validated to be a suitable classifier for SeqFD. Moreover, experiments
are also conducted to choose a feasible window size, and to test the influence of
under-sampling.

At the same time of presenting SeqFD in detail, a practical workflow for
fraudulent transaction detection is presented. After SeqFD gives a prediction,
staffs of banks can check the suspicious transactions by phone call, so the con-
firmed fraudulent transactions can be labeled. With continuously new-coming
labeled instances, SeqFD can be trained periodically to be kept updating. Our
contributions are summarized as follows:

• We design novel statistical sequential features which are effective for fraud-
ulent transaction detection, and which can reflect the intrinsic motivation of
fraudsters.

• We propose and implement SeqFD. By comprehensive experimental evalu-
ation, we prove the effectiveness and the usability of SeqFD.

• Based on real data, we present our statistical discoveries and learned lessons
of fraudulent transactions, which are valuable for future studies.
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Fig. 1. The difference between fraudulent transactions in B2C and C2C scenarios.

The rest of this paper is organized as follows: Section 2 offers the statistical
analysis and the learned lessons of the dataset. In Section 3, the mechanism of
SeqFD is demonstrated. In Section 4, the results of the experiments are shown.
Section 5 gives a complimentary discussion on SeqFD and Section 6 draws a
conclusion for this paper.

2 Real Data Analysis

In this section, the dataset we study is introduced in detail first. Afterward, the
statistical characteristics of the fraudulent transactions are shown graphically.
Based on the abnormal patterns we observe from the fraudulent transactions,
we explore the possible motivations behind their fraudulent behaviors.

2.1 Dataset Description

We study a real electronic transaction dataset provided by a real commercial
bank. The dataset totally contains 3502048 B2C transaction records made by
92133 customers in 3 months (from April 1, 2017, to June 30, 2017). Among all
the transaction records, 65291 are labeled fraudulent manually by staffs of the
bank. Although this dataset only covers a small portion of all the customers of
the bank, it covers all the customers who were defrauded in the 3-month time
span. Among the 92133 customers, 8238 are victims, and all of their transactions
in the time span are extracted into our dataset. The other normal customers are
picked out randomly, and all of their transaction records in the time span are
extracted. These two parties form the whole dataset.

Although the original dataset has more than 20 attributes, some of the at-
tribute values are missing in many instances, and some of the attributes have
the same value for all the instances. We omit those helpless attributes. After
data preprocessing, for each transaction record, we preserve 8 attributes. Their
explanations are listed in Table 1. Note that Customer ID and Vendor ID do
not have the same format.

2.2 Learned Lessons

Why B2C other than C2C Besides the B2C transaction records, actually we
are also provided the C2C transaction records of those 92133 customers in the
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Table 1. Attributes explanation

Attribute Name Type Representation

Customer ID String A unique customer.

Transaction ID String A unique transaction record.

Vendor ID String A shop, a restaurant or a third-party payment provider, etc.

Transaction Time Date The exact time when the transaction occurred.

Daily Limit Numeric The daily spending upper limit of an account.

Single Limit Numeric The spending upper limit for one transaction.

Transaction Amount Numeric The amount of money that the customer pay.

Frequently-Used IP
Address

Boolean
If the transaction comes from an IP address which is frequently

used by the customer.

three months, but the number of fraudulent instances in those C2C transactions
is only 1. Why criminals steal money mainly by B2C transactions instead of C2C
transactions? Regarding the difference of their procedures shown in Figure 1, the
explanation is as follows: If a fraudster transfers the money into his/her own card
directly by a C2C transaction, it will be too risky because his/her card number
can be seen in the C2C transaction record. But in a B2C scenario, B can be a non-
bank e-transaction service provider, such as PayPal. For example, a fraudster
can transfer money from the stolen card to a PayPal account for the first step
and then transfer the money from the PayPal account to multiple fraudulent
cards. In the B2C scenario, the PayPal account and the fraudulent cards are
untraceable in the transaction record, because in a B2C transaction record, the
Vendor Id field only contains a String that stands for the PayPal company, not
the specific PayPal account. By stealing money via B2C transactions, a fraudster
can keep himself/herself invisible in the transaction records. This is probably
the reason why fraudsters usually commit crimes through B2C other than C2C
transactions.

Statistical discoveries We conduct statistical analysis on a month of trans-
actions. We find out that 99.6% of the fraudulent transactions did not use a
frequently-used IP address (FUIP), as shown in Figure 2. This means that these
transactions are highly possible to be made by the criminals after they have
stolen the accounts, instead of being made by the deceived victims themselves.
We also discover that more than 96% of the fraudulent B2C transactions are not
the first transaction made by the customer in the month (without the influence
of data boundary, this ratio could be higher). Furthermore, we discover that the
time intervals between each two consecutive fraudulent transactions of a cus-
tomer are often abnormally short, and the amounts of the two transactions are
often close. We name these two quantities TTD (Transaction Time Difference)
and TAD (Transaction Amount Difference), so the graph of the joint cumulative
density function is drawn in Figure 3. It is obvious that fraudulent transactions
usually have smaller TTD and TAD than normal transactions. In another word,
fraudsters usually steal the money with multiple consecutive quick transfers.
Another abnormal phenomenon about the fraudulent transactions we find out
is shown in Figure 4. The amounts of normal transactions present a power-law
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Fig. 2. Distribution of the transaction records when they are divided by the frequently-
use IP address attribute.

distribution, by contrast, the amounts of fraudulent transactions present a quite
different distribution which has several isolated peaks. The two dominating peaks
are 1000 and 2000.
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Fig. 3. The TTD-TAD distribution.
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Fig. 4. The difference between fraudulent and normal transactions in amount distri-
bution.

Explore fraudsters’ motivation So far we have presented the observations
and discoveries we obtained from the statistical results. In this part, we want to
explore the reasons behind the abnormal fraudulent behavioral patterns.

Let’s start with the abnormally small TTD. Consider such a scenario: When
a fraudster has just stolen an account, his goal is to take more money away.
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Table 2. Frequencies of different daily spending upper limits.

Daily Spending Upper Limit Frequency

1000 1.65%

2000 10.80%

5000 80.60%

10000 1.40%

20000 5.54%

50000 or more 0.07%

However, in most instances, as soon as a transfer occurs, the customer will
be informed by the bank immediately probably by phone message. Then the
customer will immediately inform the bank to freeze the account. This leads to
the abnormal small TTD, because if the fraudsters want to steal more money,
they have to do it quickly. They don’t even have time to camouflage the TTD.
But why the fraudsters do not steal money in a single transaction? Why the
fraudulent transactions often present in sequences?

Usually, a bank will set a daily spending upper limit for each customer. We
make statistics for all the upper limits on a month of transaction records, which
is shown in Table 2. It shows that over 80% of the customers have a daily upper
limit of 5000. This fact can explain the two peaks (1000 and 2000) in Figure
4(b): Consider a criminal has stolen a bank account and does not know whether
or not the card has been used for shopping on the very day. In such a situation,
1000+2000+2000 could be one good combination of transfer amounts because of
three advantages: First, compared to a single transfer with larger amount, such as
5000, 1000+2000+2000 is more likely to succeed, at least partially, because more
than 93% of the customers have a daily spending limit equal to or less than 5000.
Once the customers have used their card for shopping today, a transfer request
of 5000 will fail, because it exceeds the daily spending upper limit. Second, once
the card is not used yet on the very day, then this combination can take as much
money as possible without any remnant. Third, compared to transfer amount
less than 1000, this combination needs fewer transaction requests, which leads
to fewer risk of being intercepted by fraud detection systems.

To summarize, fraudsters are willing to steal the money in smaller amounts
by multiple quick transfers, because this way has a higher profit expectation
and fewer risks. As a result, the fraudulent transactions present a sequential
form for most of the time, and the time intervals between every two consecutive
transactions are often small.

3 Proposed Model

In response to the threat of fraudulent B2C transactions, we propose a novel
model, SeqFD, for real-time fraudulent transaction detection. The innovation of
SeqFD lies in the statistical sequential features. In this section, we first overview
the mechanism and deployment scenario of SeqFD. Then, we elaborate on how
to compute the statistical sequential features by using the sliding time window.
Finally, we list all the 9 features applied by SeqFD.
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3.1 Overview

The workflow of SeqFD is depicted in Figure 5. Within the dashed line in the
right part, the mechanism of SeqFD is demonstrated in detail. In the left part,
a possible deployment scenario is shown.

The mechanism of SeqFD SeqFD has two stages: the training stage and the
classification stage. At the training stage, the labeled transaction records will
be sampled to form a raw dataset. The reasons for sampling are two-fold: First,
the volume of the whole dataset is very large, using the whole dataset to train
the classifier is quite time-consuming. Second, in reality, fraudulent instances
are often far less than normal instances so the dataset is extremely skewed. One
feasible sampling strategy is just like how the dataset is extracted for our study:
Obtain all the victims in a time span first (we use three months in this work),
then query for all the transactions these customers have made within the time
span. After that, randomly pick out some normal customers and retrieve their
transaction records in the same time span. Finally, combine these two parts to
form a labeled training set, which is not that large or skewed.

Through the sliding time window strategy for transaction aggregation, a raw
instance can be turned into a feature vector which includes sequential features.
Feed the feature set to a machine learning model for training, and after that, a
trained classifier will be ready to give a prediction. At the classification stage,
streaming transaction requests will be sent to SeqFD, and SeqFD will give a real-
time response. In specific, SeqFD will first turn the raw request into a feature
vector composed of the same features as above, and then the feature vector will
be sent to the classifier. Finally, the classifier gives the prediction.

Deployment scenario of SeqFD The left part of Figure 5 shows how to put
SeqFD into a real application. When SeqFD receives a transaction request, it
gives a prediction. If SeqFD judges a transaction request suspicious, people of
the bank could give a phone call to the customer to figure out if the transaction
is truly fraudulent. Then the transaction can be labeled and be added into the
database of labeled transaction records. Another source of labeled instances is
police reports. SeqFD cannot catch all the fraudulent transactions, and some
of the missing fraudulent instances might be obtained from the police. With
these two sources of labeled transactions, SeqFD can be retrained periodically to
make the model updated. Therefore, SeqFD is able to adjust itself in accordance
with the change in crowd behavior patterns. No matter how the normal crowd
behavior change, as long as it is different from the fraudulent crowd behavior,
then SeqFD is able to work effectively.

3.2 Sliding Time Window

This subsection introduces the detailed design of the transaction aggregation
technique based on sliding time window strategy. In the database of historical
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Fig. 5. SeqFD overview.

behavior which is in the middle of Figure 5, an independent list of historical
transactions is kept individually for every customer. An example of such a list
of a certain customer is shown in Figure 6. In this simple example, the size of
the time window is set to 1 minute, which means that the list will only contain
the newest transaction records that happened within 1 minute ago. Every time
a new-coming transaction is added into the list, the time window slides forward,
then the obsolete transactions will be thrown out of the time window. Sliding
time window ensures that the features computed by aggregated transactions can
precisely depict the recent behavior pattern of a customer.
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Fig. 6. An exemplary illustration of how the time window slides on the historical
transactions of a certain customer.

3.3 Feature Engineering

The features and their explanations are shown in Table 3.

As mentioned in Section 2.2, TTD and TAD are two typical sequential fea-
tures, but they only include information on two consecutive transactions. What



10 C.Jing et al.

Table 3. Selected Features

Name Type Explanation Sequential? Original?

Amount Numeric The amount of the transaction. No Yes

FUIP Boolean If this transaction is made from a frequently used IP address. No Yes

OverLim Boolean If this transaction is over the spending limitation. No No

AmtAvg Numeric The average of the transaction amounts in the time window. No No

Times Numeric The number of transactions within the time window. No No

TDAvg Numeric The average of all the TTDs within the time window. Yes No

TDVar Numeric The variance of all the TTDs within the time window. Yes No

ADAvg Numeric The average of all the TADs within the time window. Yes No

ADVar Numeric The variance of all the TADs within the time window. Yes No

we need are features that can summarize a bunch of transactions, so the se-
quential features should be aggregated. In specific, within the time window,
the TTDs and TADs are aggregated by computing their average and variance.
Thus, statistical sequential features which summarize the characteristics of all
the transactions in the time window are generated.

In this work, we design only 9 features, and most of them can be computed
just by time and amount. This makes our model easy to be transplanted to
other datasets. Furthermore, SeqFD can also sufficiently protect the privacy of
customers. If a bank deploys SeqFD to help them detect fraudulent transactions,
SeqFD will only gather the basic information of the transactions. No personal
information will be gathered. This is also one of the advantages of SeqFD.

4 Evaluations

In this section, comprehensive experiments are conducted to evaluate SeqFD.
The questions for which we want to find out answers are as follows:

(1) Which machine learning model performs best on the features?
(2) What size is appropriate for the sliding time window?
(3) Are the statistical sequential features really important?
(4) Are there any possible negative influences when the under-sampling is

applied to solve the skewed-data problem?

4.1 Experimental Setup

We use the dataset of April and May as the training set and the dataset of June
as the test set. Cross-validation is not adopted in the experiment because it will
cause the time travel problem, e.g., using the data from future to train a model
and using the data from past to test. The training set contains 2393817 normal
instances and 40393 fraudulent instances, and the testing set contains 1003539
normal instances and 24898 fraudulent instances. The ratio of the two classes
seem approximately 59 : 1, but it is not the true ratio because 2393817 is just a
portion of the normal instances. Actually, the number of transactions in a month
is nearly 14 million, so the actual ratio is nearly 693 : 1. As the two classes are
highly unbalanced, we sample 10% of the normal instances.
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Note that we do the sampling process after the raw dataset have been trans-
formed to feature set so that the statistical sequential features are kept lossless.
The instances of the test set are sent to the classifier in the right temporal order
to simulate the transaction stream.

Window size candidates We prepare six candidate window sizes on different
scales: 1 minute, 10 minutes, 1 hour, 1 day, 1 week and 1 month. Our goal is
to figure out which one can lead to the best performance of classification. The
window size will be referred to as WS for short afterward. A WS larger than 1
month is not taken into account since the intervals of the adopted dataset for
training is only two months.

Machine learning model candidates For classification, the candidate ma-
chine learning models we choose are the Random Forest [9], XGBoost [3], Deci-
sion Tree, Naive Bayes, 2-hidden-layer Neural Network, and Logistic Regression.
For Neural Network, we set 10 perceptrons to each hidden-layer. For other mod-
els, we use the default hyper-parameters preset in Scikit-Learn [14].

Assessment criteria We use three assessment criteria to evaluate the WS and
choose a suitable classifier.

AUC (Area Under ROC Curve): For each window size, we take the AUC
of the machine learning models as a performance indicator.

The highest TPR when FPR is less than 0.01: According to our dataset
provider, in the industry 1% is the tolerance upper limit for FPR. As a result,
a TPR reached with a FPR higher than 1% is regarded as meaningless in this
work.

The time for generating features: For a practical model, the efficiency,
e.g., the time of generating features, is a necessary factor.

4.2 Evaluation Results

Figure 7 shows that XGBoost has the highest AUC for all the six candidate
window sizes, it performs robustly and stably. Random Forest is able to take the
second place except when WS is 1 minute. The performances of the other four
machine learning models fall behind.

Figure 8 presents the highest TPR reached by each machine learning model
when FPR is controlled under 0.01 by tuning the classification threshold. The
best record is 97.2%, which is achieved by XGBoost when WS is set to be 1
month. Random Forest performs better than XGBoost when the WS is smaller,
except for 1 minute. And the other four models still fall behind.

In common sense, a larger window size could lead to more cost for efficiency,
because for the customers who make transactions frequently and continuously, a
larger window size will contain more transactions to compute. Thus we test the
average time it costs to transform a raw transaction into a feature vector on a
server with a dual-core 2.40 GHz CPU and 32 GB RAM, and the result is shown
in Figure 9. Surprisingly, it shows that when the WS is 1 month, the average
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Table 4. The training and predicting time (seconds) of the candidate ML models.

Model Training Time Predicting Time

Random Forest 7.18 1.79
Naive Bayes 0.94 0.83
Decision Tree 6.38 0.62

Logistic Regression 7.05 0.67
XGBoost 9.44 1.09

Neural Network 32.96 0.78

time is only about 1.5 milliseconds, which is not far more than the average time
when the WS is smaller. Therefore, 1 month is adopted as the appropriate WS.

Furthermore, we also test the training time and the predicting time of each
machine learning model. These two indicators are not influenced by the WS,
because the number of instances and the number of features remain unchanged
when WS is changed. Therefore, we set the WS to be 1 month and test the
training and test efficiency for each classifier. The result is shown in Table 4.
For the training stage, the time cost of XGBoost is 9.44 seconds. For the test
stage, the test set contains 1028437 instances, so the average predicting time of
XGBoost for one instance is less than 2 microseconds. Therefore, the total time
cost for the predicting stage is 1.5ms+2µs ≈ 1.5ms. According to our experience
of the industry, this time cost is far below the tolerance upper bound. XGBoost
is nearly 40% faster than Random Forest. In addition, XGBoost has the best
performance when the WS is 1 month. Therefore, it should be applied by SeqFD.
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(f) 1 month

Fig. 7. The ROC curves of the candidate machine learning models under different
window sizes.

4.3 Feature Importance

As XGBoost and Random Forest are both capable to output the importance of
the features, we use them to evaluate the importance of the features. The result
is shown in Figure 10 (a).
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Fig. 8. The highest TPR reached by the candidate machine learning models when FPR
is less than 0.01.

Figure 10 (a) shows that all of the 4 statistical sequential features play indis-
pensable roles in SeqFD, especially TDAvg. The other two features generated by
the sliding time window, Times and AmtAvg, are also quite important. For the
original features, Amount plays an important role in both models. FUIP is quite
important in Random Forest but seems useless in XGBoost. We also conduct
a comparative experiment with different features. For the first set, all the nine
features are included; For the second set, the four statistical sequential features
are eliminated; For the third set, transaction aggregation is not used and only
two original features, Amount and FUIP, are included. The result in Figure 10
(b) shows that the statistical sequential features truly boost the performance of
SeqFD.

4.4 Effects of Under-Sampling

In the evaluations above, we use a training set composed of 10% normal in-
stances (about 100000) and all fraudulent instances (24898). Actually, 10% is
out of intuition. Therefore, we want to figure out if different sampling ratios will
lead to fluctuations in performance. We use the ROC of XGBoost to represent
the classification performance. The WS is set to be 1 month. The candidate sam-
pling ratios for the normal instances are 5%, 10%, 20%, 50% and non-sampling,
respectively. The result is shown in Figure 11.

Figure 11 shows that all of the candidate sampling ratios have an AUC
larger than 0.995, which means that SeqFD performs robustly without a large
fluctuation under different sampling ratios. Surprisingly, when the sampling ratio
is set to be 5%, XGBoost performs the best. Although this result may be due to
fortuitous, the rationality of under-sampling for solving the skewed-data problem
is proved.

5 Discussion

Although TPR = 97.2% with FPR < 1% is the highest performance we get from
the experiment, actually the performance can be improved further in practice
because our dataset has a boundary. Some of the seemingly first transactions
in sequences are actually not the first ones, because those plausible headers
could have precedents in the data outside the boundary. For example, when we
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Fig. 9. The average time it costs to transform a raw transaction to a feature vector.

compute the feature vectors for the transactions in April, the transactions of
March should be within the time window if WS is set to be 1 month. But we
are not provided the dataset of March. As a result, a portion of the feature
vectors, especially the ones near the boundary, are not computed precisely. In
practice, the transactions will be continuous streaming data. The problem of
data boundary can be diluted infinitely.

Another issue is about the test set. As mentioned before, the test set contains
a sampled portion of the normal transactions. However, as the normal transac-
tions are picked randomly, they are supposed to have the same distribution as
the whole transaction dataset. Thus, there is no straightforward reason for the
FPR to rise if the whole transaction dataset is used to test SeqFD, because
with the rise of the numerator (the number of error-alarmed transactions), the
denominator (the number of all the normal transactions) is also rising. In addi-
tion, as our test set contains all the fraudulent transactions in the time span, the
TPR has absolutely no reason to decrease when using the whole dataset to test
SeqFD. Thus the performances of SeqFD in the evaluations are reliable indeed.
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(a) Feature importances.
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(b) The performance reached by different features.

Fig. 10. Evaluations of the feature importance. In common sense, when the perfor-
mance gets higher, it will be harder to get improved.

The third point we want to discuss is the scalability of SeqFD. For the classi-
fication process of SeqFD, the top two classifiers, Random Forest and XGBoost,
are both scalable models [9, 3]. For the feature generation process of SeqFD, the
historical records retained by the sliding time window of two customers have
no coupling, so transactions of different customers can also be transformed into
feature vectors in parallel. We use Redis to implement the data warehouse of
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Fig. 11. The ROC curves of XGBoost when the WS is 1 month under different sam-
pling ratios of normal instances.

the historical records. The Redis data warehouse can be distributed in multiple
servers in cluster mode, and it has high efficiency for both reading and writing.
As a result, SeqFD is scalable and is possible to be applied to real bank systems
with a huge volume of data.

Our work in progress is to deploy SeqFD in a distributed structure for real
banking transaction systems with high concurrency and burst network traffic,
and to test the performance of SeqFD in real streaming data.

6 Conclusion

To reach the goal of detecting effectively fraudulent transactions, we propose a
novel model, SeqFD. The main innovation of SeqFD is a new-designed set of
statistical sequential features. Instead of intuition, the sequential features come
from statistical analysis of a real dataset. By observing the difference between
normal and fraudulent transactions, we discover several typical abnormal pat-
terns of the fraudulent transactions which can be distinguished by sequential
features. We explore the reasons behind the observations, and find out that
the fraudulent behavior patterns are possibly caused by the fraudsters’ intrinsic
motivation: They always want to steal more money as quickly as possible. Ac-
cordingly, we apply a sliding time window strategy to aggregate the sequential
features into statistical sequential features, and we present the mechanism and
deployment scenario of SeqFD in detail.

Through experimental evaluations, among the six representative machine
learning models, we find that XGBoost is the classifier which fits the best with
SeqFD. In specific, when the window size is set to be 1 month, XGBoost reaches
an AUC of 0.996, and a TPR of 97.2% when FPR is less than 1%. In SeqFD,
the problem of concept drift is alleviated by the sliding time window, and the
problem of class-imbalanced data is solved by the under-sampling. The exper-
iment shows that no observable negative influence emerges when the sampling
ratio is smaller. Furthermore, the result of the efficiency test is also given. On a
server with dual-core 2.40 GHz CPU and 32 GB RAM, the trained SeqFD can
give a response to a transaction request in about 1.5 milliseconds, which can
competently meet the requirement of real-time. This makes SeqFD a practical
model for fraudulent transaction detection in real-world applications.
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