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Abstract. Interest in cryptocurrencies has skyrocketed since their in-
troduction a decade ago, with hundreds of billions of dollars now invested
across a landscape of thousands of different cryptocurrencies. While there
is significant diversity, there is also a significant number of scams as
people seek to exploit the current popularity. In this paper, we seek to
identify the extent of innovation in the cryptocurrency landscape using
the open-source repositories associated with each one. Among other find-
ings, we observe that while many cryptocurrencies are largely unchanged
copies of Bitcoin, the use of Ethereum as a platform has enabled the de-
ployment of cryptocurrencies with more diverse functionalities.

1 Introduction

Since the introduction of Bitcoin in 2008 [23] and its deployment in January 2009,
cryptocurrencies have become increasingly popular and subject to increasing
amounts of hype and speculation. Initially, the promise behind cryptocurrencies
like Bitcoin was the ability to send frictionless global payments: anyone in the
world could act as a peer in Bitcoin’s peer-to-peer network and broadcast a
transaction that — without having to pay exorbitant fees — would send money
to anyone else in the world, regardless of their location, citizenship, or what
bank they used. This is achieved by the decentralization inherent in the open
consensus protocol, known as proof-of-work, that allows any peer to not only
broadcast transactions but also act to seal them into the official ledger.

While the realities of Bitcoin have shifted in the ensuing years, the land-
scape of cryptocurrencies has also shifted considerably. There are now thousands
of alternative cryptocurrencies, supporting more exotic functionalities than the
simple atomic transfer of money supported by Bitcoin. Ethereum, for example,
promises to act as a distributed consensus computer (the Ethereum Virtual Ma-
chine, or EVM for short) by enabling arbitrary stateful programs to be executed
by transactions, while Monero and Zcash promise to improve on the anonymity
achieved by Bitcoin transactions. Others don’t promise new functionalities but
instead aim to support the same functionality as Bitcoin in more cost-effective
ways; e.g., Zilliqa [16, 9, 28, 19, 17] and Cardano [15, 7] incorporate respective
ideas from the academic literature about achieving consensus without relying
entirely on proof-of-work.



Alongside this rapid expansion in the functionality of cryptocurrencies (or
indeed the general applicability of the underlying concept of a blockchain), there
has also been a genuine explosion of investment into these technologies. In July
2013, for example, there were 42 cryptocurrencies listed on the popular data
tracker CoinMarketCap,1 and the collective market capitalization was just over 1
billion USD. In July 2018, in contrast, there were 1664 cryptocurrencies, and the
collective market capitalization was close to 1 trillion USD. While comprehensive
in terms of deployed cryptocurrencies, this list does not even include many of
the recent “initial coin offerings” (ICOs) that have similarly attracted millions in
investment despite there having been many documented scams.23 Against this
backdrop of hype and investment, it is thus crucial to gain some insight into the
different types of functionalities offered by these many different cryptocurrencies,
to understand which coins offer truly novel features and are backed by genuine
development efforts, and which ones are merely hoping to cash in on the hype.

This paper takes a first step in this direction, by examining the entire land-
scape of cryptocurrencies in terms of the publicly available source code used to
support each one. While source code may not be the most accurate representa-
tion of a cryptocurrency (as, for example, the actual client may use a different
codebase), it does reflect the best practices of the open-source software commu-
nity, so we believe it to be a reasonable proxy for how a cryptocurrency does (or
should) represent itself.

2 Related Work

We treat as related research that measures either general properties of open-
source software, or research that measures properties of cryptocurrencies. In
terms of the former, there have been numerous papers measuring GitHub repos-
itories. For example, Hu et al. [12] and Thung et al. [29] measured the influence
of software projects according to their position of their repositories and develop-
ers in the GitHub social graph, and others have taken advantage of the volume
of source code available on GitHub to analyze common coding practices [34] or
how bugs vary across different programming languages [24].

In terms of the latter, there are by now many papers that have focused
on measuring properties of both the peer-to-peer networks [18, 8, 4, 1] and the
blockchain data associated with cryptocurrencies [25, 26, 20, 27, 22, 14, 5, 30, 6, 3],
as well as their broader ecosystem of participants [21, 33, 31, 32]. Given the vol-
ume of research, we focus only on those papers most related to our own, in that
they analyze properties across multiple cryptocurrencies, rather than within a
single one like Bitcoin. In terms of comparing Bitcoin and Ethereum, Gencer
et al. [10] compared the level of decentralization in their peer-to-peer networks
and found, for example, that Ethereum mining was more centralized than it was
in Bitcoin, but that Bitcoin nodes formed more geographic clusters. Azouvi et

1 https://coinmarketcap.com/historical/20130721/
2 https://deadcoins.com/
3 https://magoo.github.io/Blockchain-Graveyard/



al. [2] also compared their level of decentralization, in terms of the discussions
on and contributions to their GitHub repositories, and found that Ethereum was
more centralized in terms of code contribution and both were fairly centralized in
terms of the discussions. Gervais et al. [11] introduced a framework for identify-
ing the tradeoff between security and performance in any cryptocurrency based
on proof-of-work, and found that the same level of resilience to double-spending
attacks was achieved by 37 blocks in Ethereum as by 6 blocks in Bitcoin. Finally,
Huang et al. [13] compared the effectiveness of different mining and speculation
activities for 18 cryptocurrencies, and found that the profitability of both was
affected by when a cryptocurrency was listed on an exchange.

3 Data Collection

In order to collect the source code associated with each cryptocurrency, we
started with the list maintained at CoinMarketCap, which is generally regarded
as one of the most comprehensive resources for cryptocurrency market data. The
site maintains not only market data for each cryptocurrency (its market capital-
ization, price, circulating supply, etc.), however, but also links to any websites,
blockchain explorers, or — crucially for us — source code repositories. We last
scraped the site on July 24 2018, at which point there were 1664 cryptocurren-
cies listed, with a cumulative market capitalization of 293B USD.

3.1 Source code repositories

Of the listed cryptocurrencies, 1123 had a link available on CoinMarketCap to
some source code repository. We examined a random sample of 10% of these
links (and all the links for the top 20 cryptocurrencies) to ensure that they were
legitimate, and in some cases replaced links where the information was inaccurate
(for Bitcoin Cash, for example, the provided link was for the repositories backing
bitcoincash.org rather than the actual software code). Of these links, 1108
(98.7%) pointed to GitHub.

As should be expected, many of the cryptocurrencies had multiple software
repositories available; indeed, the links provided on CoinMarketCap were to the
lists of repositories for a given GitHub organization, and in total there were
13,694 individual repositories available. The vast majority of these repositories
had been created after October 2014, with a notable rise in frequency starting in
April 2017. These repositories typically fell into one of three categories: (1) inte-
gral to the cryptocurrency itself, such as implementations of the reference client
or supporting libraries; (2) irrelevant, such as a different project by the same or-
ganization; or (3) unchanged forks or mirrors of popular software projects, such
as llvm. Given our goal of differentiating between the various cryptocurrencies,
we did not want to clone every available repository but instead sought to isolate
the first category of “meaningful” code.

To do this, we assigned a rating to each repository for a given cryptocurrency
according to: (1) the gap between its last update and the current date, to capture



activity (where this was subtracted from the rating, as a longer gap indicates
less activity); (2) its number of forks, to capture popularity and reuse; and (3)
information about the name of the repository, to capture relevance. (For example,
repositories with names including ‘website’ were excluded and ones with names
including ‘core’ or ‘token’ were given a higher rating.) For each cryptocurrency,
we then cloned the top 20% of the list of repositories, sorted from high to low by
these ratings (or cloned one repository, whichever was larger). We then manually
examined the repositories (both selected and unselected) for a random sample of
10% of the cryptocurrencies in order to ensure that we had selected the “right”
repositories, although without ground truth data it was of course impossible
to guarantee this for all cryptocurrencies. A full list of the 13,694 available
repositories, along with our ratings and our decision of whether to clone them or
not, is available online.4 We cloned 2354 repositories in total, which comprised
roughly 100 GB of data.

3.2 Deployed source code

As evidenced by the 866 (52%) listed cryptocurrencies that were categorized as
tokens (and the fact that 74 of these even had ‘token’ in their name), it is popular
to launch new cryptocurrencies not as standalone coins, but as tokens that are
supported by existing cryptocurrencies. Of these, by far the most popular type
is an ERC20 token, supported by Ethereum. Of these listed tokens, 406 did not
have any source code link available. For ERC20 tokens that have been deployed,
however, it is often possible to obtain the contract code from another source: the
version deployed on the Ethereum blockchain itself is compiled bytecode, but it
is common practice to provide the Solidity code and display it on blockchain
explorers such as Etherscan.5

For these tokens, we thus chose to use Etherscan as a data source (in addition
to any provided repositories), in order to aid our Ethereum-based analysis in
Section 5. At the time that we scraped Etherscan, there were 612 ERC20 tokens
listed, identified by a name and a currency symbol (e.g., OmiseGO and OMG).
Of these, we found 438 with a match on CoinMarketCap, where we defined a
match as having (1) identical currency symbols, and (2) closely matching names.
(We couldn’t also require the name to be identical because in some cases the
name of the contract was somewhat altered from the name of the cryptocurrency;
e.g., SPANK instead of SpankChain.) We scraped the available contract code for
each of these tokens, which in all but 9 cases was Solidity code rather than just
on-chain bytecode. We thus ended up with 429 deployed ERC20 contracts.

4 Bitcoin Code Reuse

In this section, we attempt to identify the extent to which cryptocurrencies reuse
the codebases of others, and in particular of Bitcoin. We do this by looking, very

4 https://github.com/manganese/alteramentum-repo-data
5 https://etherscan.io/



simply, at taking files from other repositories and using them without any modi-
fication. To identify this, we computed and stored the hash of every source code
file in our cloned repositories; we identified source code file extensions using the
CLOC library.6 We then computed a similarity score Shash between a repository
A and another one B by counting the number of files in A with an identical file
in B (meaning the hash was the same), and then dividing by the total number
of files in A. To elevate this to the level of cryptocurrencies C1 and C2, we then
computed Shash(C1, C2) as

Shash(C1, C2) =

∑
A∈C1

Shash(A,∪B∈C2
B)∑

A∈C1
# files in A

;

i.e., for each repository A contributing to C1 we counted the number of files that
were identical to a file in any repository contributing to C2, and then divided
this by the total number of files across all repositories contributing to C1.

We ran this for every pair of cryptocurrencies A and B (for both Shash(A,B)
and Shash(B,A), since they are not symmetric), and used the results to create
a graph in which nodes represent cryptocurrencies and there is a directed edge
from A to B if Shash(A,B) > 0.7. This resulted in a graph with 445 nodes and
1854 edges, the largest connected component of which can be seen in Figure 1
(consisting of 302 nodes and 1599 edges).

Most of this component consists of Bitcoin forks. The exception is clus-
ter 9, which consists of one cryptocurrency (Zeepin) that is 100% similar to
16 other cryptocurrencies. The reason is simple: its repository consisted solely
of an LGPL-3.0 license, so it matched other repositories with the same version
of this license. At the time we scraped CoinMarketCap, Zeepin had a market
capitalization of 23 million USD. We can briefly explain clusters 1-8 as follows:

– 1. The node at the center of this cluster, Akuya Coin, has a directory struc-
ture similar (63%) to a version of the Bitcoin codebase from 2013, but many
(32%) of its files are empty and thus have the same hash, which makes it
appear similar to 76 other Bitcoin forks.

– 2 and 3. Both of these clusters also have a directory structure similar to older
versions of the Bitcoin codebase (the average directory similarity was 89% for
cluster 2 and 82% for cluster 3), and are similar to the same cryptocurrency
(BumbaCoin). Many also incorporate the Zerocoin code:7 84% of the nodes
in cluster 2 and 65% of the nodes in cluster 3. This is notable given that this
code comes with the emphatic warning “THIS CODE IS UNMAINTAINED
AND HAS KNOWN EXPLOITS. DO NOT USE IT.” In total it is included
in repositories for 97 different cryptocurrencies.

– 4 and 5. These clusters were the ones most similar to Bitcoin: on average
we had Shash = 0.51 and Sdir = 0.80 for cluster 4 and Shash = 0.37 and
Sdir = 0.96 for cluster 5. For cluster 4, the matching versions were also in
quite a tight range from September 2013 to September 2014 (our versions 9
to 11), whereas most other clusters ranged more evenly across all 18 versions.

6 https://github.com/AlDanial/cloc
7 https://github.com/Zerocoin/libzerocoin



Fig. 1: The largest connected component of the graph formed by creating an edge from
A to B if Shash(A,B) > 0.7, along with labels for the most prominent clusters.

– 6 and 7. These clusters consisted largely of forks from Litecoin: 100% of
cluster 6 had the file scrypt.c, which is unique to Litecoin. 64% of cluster 7
had files with scrypt in the name, although only 21% identified as copyright
derivatives of anything other than Bitcoin.

– 8. The nodes in this cluster were on average newer than the others (with the
first repository created in June 2015), and indeed their directory structure
is more consistent with newer versions of the Bitcoin codebase.

5 Ethereum as a Platform

As discussed in Section 3.2, it is increasingly popular to deploy cryptocurrencies
as tokens on the Ethereum blockchain; indeed, over half of the cryptocurrencies
listed on CoinMarketCap fell into this category. This section thus explores this
type of cryptocurrency deployment, focusing again on the extent to which ERC20
tokens are similar to or different from each other. As an ERC20 token consists
of just a single file, our methods from the previous sections do not apply here so
we develop new methods for identifying similarities.

The basic functionality of an ERC20 token — allowing the transfer of to-
kens from one holder to another — defines a contract type called Basic (or
BasicToken) or — with one slight functional difference — ERC20. There are, how-
ever, many additional types that ERC20 tokens can have. For example, if they
want to allow for the creation of new tokens they can be Mintable and if they
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Fig. 2: When ranked from most to least popular, the cumulative percentage of contracts
matching three different features, for both the set of deployed contracts and the ones
found in repositories.

want to allow for the destruction of existing tokens they can be Destructible

or Burnable. These types are not standardized, and in fact new types can be
defined and used within the Solidity code for a contract.

To identify the types of a given token, we identified all lines in its con-
tract of the form contract X is Y {, where X is the name of the contract
and Y is its type. Some intermediate types themselves appear as names (e.g.,
contract Mintable is Ownable), which we exclude from our final results but
carry over transitively to the higher-level contract names; e.g., if X is Mintable

and Mintable is Ownable then X is both Mintable and Ownable. This resulted
in a map from the higher-level token names to a list of all of their types.

Beyond these types, we also looked at the version the contract used of Solid-
ity and of the SafeMath library, which provides safe arithmetic operations. For
the version of Solidity, we looked for lines starting with pragma solidity and
extracted the version from what followed (typically of the form 0.4.X). To deter-
mine the version of SafeMath, we first used CLOC to strip the comments from
the .sol file. We then identified the lines of code that defined the SafeMath li-
brary (starting with either contract SafeMath { or library SafeMath { and
ending with }), and hashed this substring to form a succinct representation.

We extracted this information from all Solidity files, whether deployed on
the Ethereum blockchain (and thus scraped from Etherscan, as described in
Section 3.2) or contained in a repository.8 For the types, Solidity and SafeMath
versions, we ordered them from most to least popular and plotted this as a CDF,
as seen in Figure 2; i.e., we plotted the percentage y of all contracts that had
one of the top x attributes.

The relatively long tails in all of the figures indicate a relatively high level of
diversity among these features in both deployed contracts and those still under
development. For example, the Solidity version most popular among deployed
contracts (version 18) was still used in only 23% of them. Whereas Figures 2b
and 2c show similar curves for both sets of contracts, Figure 2a shows a much
longer tail for contracts contained in repositories, with 246 distinct types in
deployed contracts and 1002 in ones in repositories. This indicates — as should

8 Interestingly, these sets were non-intersecting; i.e., there was no contract in a repos-
itory that was identical to a deployed one.



perhaps be expected — that (1) there are just many more possibilities for con-
tract types than for versions, and (2) there is greater experimentation with types
in contracts still under development. Even among deployed contracts, 129 out
of 429 had a type that did not appear in any other deployed contracts, and 148
of the 246 distinct types appeared in only a single contract.

Finally, we view the points of similarity that did exist as operating primarily
in support of the safety of deployed contracts. For example, among the 20 most
popular types across both deployed and repository contracts, five of them defined
the basic ERC20 functionality, and six of them were related to safety in terms
of either including a standard library or in defining an owner who could take
action if something went wrong. The same is true of the usage of FirstBlood’s
StandardToken, which was the first safe implementation of this type, or of the
SafeMath library. We thus view these similarities as a sign of good development
practices, rather than the copying of ideas.

6 Conclusions

This paper considered diversity in the cryptocurrency landscape, according to
the source code available for each one, in order to identify the extent to which new
cryptocurrencies provide meaningful innovation. This was done by examining the
source code for over a thousand cryptocurrencies, and — in the case of ERC20
tokens — the deployed code of hundreds more. While more sophisticated static
analysis of the source code would likely yield further insights, even our relatively
coarse methods clearly indicated the dominance of Bitcoin and Ethereum, as well
as the extent to which creating a standalone platform is a significantly greater
undertaking (leading to the reuse of much of the Bitcoin codebase) than defining
just the transaction semantics of an Ethereum-based token.
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