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Abstract. We propose a proof of work protocol that computes the
discrete logarithm of an element in a cyclic group. Individual provers
generating proofs of work perform a distributed version of the Pollard
rho algorithm. Such a protocol could capture the computational power
expended to construct proof-of-work-based blockchains for a more useful
purpose, as well as incentivize advances in hardware, software, or algo-
rithms for an important cryptographic problem. We describe our proposed
construction and elaborate on challenges and potential trade-offs that
arise in designing a practical proof of work.
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1 Introduction

We propose a proof of work scheme that is useful for cryptanalysis, in particular,
solving discrete logarithms. The security of the ECDSA digital signature scheme
is based on the hardness of the elliptic curve discrete log problem. Despite the
problem’s cryptographic importance, the open research community is small and
has limited resources for the engineering and computation required to update
cryptanalytic records; recent group sizes for elliptic curve discrete log records
include 108 bits in 2002 [11], 112 bits in 2009 [10], and 113 bits in 2014 [30].

Our proposition aims to harness the gigawatts of energy spent on Bitcoin
mining [29] to advance the state of the art in discrete log cryptanalysis. Jakobsson
and Juels [16] call this a bread pudding proof of work. Just as stale bread
becomes a delicious dessert, individual proofs of work combine to produce a
useful computation. While memory-hard functions aim to discourage specialized
hardware for cryptocurrency mining [21], we hope for the exact opposite effect.
Just as Bitcoin has prompted significant engineering effort to develop efficient
FPGAs and ASICs for SHA-256, we wish to use the lure of financial rewards from
cryptocurrency mining to incentivize special-purpose hardware for cryptanalysis.

2 Background

Let G be a cyclic group with generator g of order q. We represent the group
operation as multiplication, but every algorithm in our paper applies to a generic
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group. Every element h ∈ G can be represented as an integer power of g, ga = h,
0 ≤ a < q, and also has a unique representation as a sequence of bits. The
discrete logarithm logg(h) is a, 0 ≤ a < q satisfying ga = h. Computing discrete
logs is believed to be difficult for certain groups, including multiplicative groups
modulo primes and elliptic curve groups. The conjectured hardness of discrete log
underlies the security of multiple important cryptographic algorithms, including
the Diffie-Hellman key exchange [12, 4] and the Digital Signature Algorithm [20].
Efficient computation of a discrete log for a group used for Diffie-Hellman key
exchange would allow an adversary to compute the private key from the public
key exchange messages; for DSA signatures, such an adversary could compute
the private signing key from the public key and forge arbitrary signatures.

2.1 Discrete Log Cryptanalysis

There are two main families of algorithms for solving the discrete log problem.
The first family works over any group, and includes Shanks’s baby step giant step
algorithm [24], and the Pollard rho and lambda algorithms [22]. These algorithms
run in time O(

√
q) for any group of order q. It is this family of algorithms we

target in this paper. A second family of algorithms is based on index calculus [15,
3]; these algorithms have sub-exponential running times only over finite fields.

Current best practices for elliptic curves are to use 256-bit curves [4], although
160-bit curves remain supported in some implementations [27]. Bitcoin miners
currently perform around 290 hashes per year and consume 0.33% of the world’s
electricity [29]. If this effort were instead focused on discrete log, a 180-bit
curve could be broken in around a year4. Scaling this to discrete logs in 224-bit
groups would require all current electricity production on Earth for 10,000 years.
Alternative cryptocurrencies such as Litecoin, Ethereum, and Dogecoin achieve
lower hash rates of about 272 hashes per year5.

2.2 Pollard Rho with Distinguished Points

The protocols we study in this paper compute the discrete log of an element h by
finding a collision gahb = ga

′
hb

′
with b 6≡ b′ mod q. Given such an equivalence,

the discrete log of h can be computed as (a′ − a)/(b− b′) mod q.
Pollard’s rho algorithm for discrete logarithms [22] works for any cyclic group

G of order q. The main idea is to take a deterministic pseudorandom walk inside
of the group until the same element is encountered twice along the walk. By
the birthday bound, such an element will be found with high probability after
Θ(
√
q) steps. The non-parallelized version of this algorithm uses a cycle-finding

algorithm to discover this collision, and computes the log as above.
We base our proof of work on Van Oorschot and Wiener’s [28] parallelized

Pollard rho algorithm using the method of distinguished points. A distinguished

4 Elliptic curve point multiplications take about 210 times longer than SHA-256 on
modern CPUs.

5 Extrapolated from peak daily hash rates at bitinfocharts.com
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point is an element whose bitwise representation matches some easily-identifiable
condition, such as having d leading zeros. Each individual process j independently
chooses a random starting point gajhbj and generates a psuedorandom walk
sequence from this starting element. When the walk reaches a distinguished point,
the point is saved to a central repository and the process starts over again from
a new random starting point until a collision is found.

The number of steps required to compute the discrete log is independent of
d, which we call the difficulty parameter below; d only determines the storage
required. We expect to find a collision after Θ(

√
q) steps by all processes. With

m processes running in parallel, the calendar running time is O(
√
q/m).

The pseudorandom walk produces a deterministic sequence within the group
from some starting value. Given a group generator g and a target h, the walk
generates a random starting point x0 = ga0hb0 by choosing random exponents
a0, b0. In practice, most implementations use the Teske pseudorandom walk [26]:
given a disjoint partition of G with 20 sets of equal size T1, . . . , T20 parameterized
by the bitwise representation of an element, choose ms, ns ∈ [1, q] at random
and define Ms = gmshns for s ∈ [1, 20]. Then we can define the walk W(x) =
Ms ∗ x for x ∈ Ts. In general, an effective pseudorandom walk updates the group
representation of a point based on some property of the bitwise representation.

2.3 Proofs of Work

A proof of work [13, 16] protocol allows a prover to demonstrate to a verifier
that they have executed an amount of work. We use the definition from [2].

Definition 1. A (t(n), δ(n))-Proof of Work (PoW) consists of three algorithms
(Gen,Solve,Verify) that satisfy the following properties:

– Efficiency:
• Gen(1n) runs in time Õ(n).
• For any c← Gen(1n), Solve(c) runs in time Õ(t(n)).
• For any c← Gen(1n) and any π, Verify(c, π) runs in time Õ(n).

– Completeness: For any c← Gen(1n) and any π ← Solve(c),
Pr[Verify(c, π) = accept] = 1.

– Hardness: For any polynomial `, any constant ε > 0, and any algorithm
Solve∗` that runs in time `(n)t(n)1−ε when given as input `(n) challenges
{ci ← Gen(1n)}i∈[`(n)],
Pr

[
∀iVerify(ci, πi) = accept | (π1, . . . , π`(n))← Solve∗` (c1, . . . , c`(n))

]
< δ(n)

We can describe the hash puzzle proof of work [1] used by Bitcoin [19] in
this framework as follows. The challenge generated by Gen is the hash of the
previous block. Solve is parameterized by a difficulty d; individual miners search
for a nonce n such that SHA-256(c, n) ≤ 2256−d when mapped to an integer.
Assuming that SHA-256 acts like a random function, miners must brute force
search random values of n; the probability that a random fixed-length integer is
below the difficulty threshold is 2−d, so the conjectured running time for Solve is
t(n) = O(2d). Verify runs in constant time and accepts if SHA-256(c, n) ≤ 2256−d.
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Proposals for “useful” proofs of work. Primecoin [17] proofs contain prime
chains, which may be of scientific interest. DDoSCoin [31] proofs can cause a
denial of service attack. TorPath [6] increases bandwidth on the Tor network. Ball
et al. [2] describe theoretical proof-of-work schemes based on worst-case hardness
assumptions from computational complexity theory. Lochter [18] independently
outlines a similar discrete log proof of work.

3 Proof of work for discrete log

The goal of this thought experiment is to develop a proof of work scheme that, if
provided with mining power at Bitcoin’s annual hash rate, can solve a discrete
log in a 160-bit group. We outline our proposed scheme, explain limitations of
the simple model, and describe possible avenues to fix the gap.

3.1 Strawman Pollard rho proof of work proposal

In our rho-inspired proof of work scheme, workers compute a pseudorandom walk
from a starting point partially determined by the input challenge and produce
a distinguished point. The parameters defining the group G, group generator
g, discrete log target h, and deterministic pseudorandom walk function W, are
global for all workers and chosen prior to setup. A distinguished point x at
difficulty d is defined as having d leading zeros in the bitwise representation,
where d is a difficulty parameter provided by the challenge generator.

In the terminology of Definition 1, Gen produces a challenge bit string c; when
used in a blockchain, c can be the hash of the previous block.

To execute the Solve function, miners generate a starting point for their walk,
for example by generating a pair of integers (a0, b0) = H(c||n) where n is a
nonce chosen by a miner and H is a cryptographically secure hash function, and
computing the starting point P0 = ga0hb0 . Workers then iteratively compute
Pi = W(Pi−1) until they encounter a distinguished point PD = gaDhbD of
difficulty d, and output π = (n, aD, bD, PD). A single prover expects to take
O(2d) steps before a distinguished point is encountered.

The Verify function can check that PD = gaDhbD and has d leading zeros.
This confirms that PD is distinguished, but does not verify that PD lies on the
random walk of length ` starting at the point determined by (a0, b0). Without this
check, a miner can pre-mine a distinguished point and lie about its relationship
to the starting point. A verifier can prevent this by verifying every step of the
random walk, but this does not satisfy the efficiency constraints of Definition 1.

A discrete log in a group of order q takes
√
q steps to compute (see Section 2.2).

A set of m honest miners working in parallel expect to perform O(2d) work per
proof. If all miners have equal computational power, the winning miner will find
a distinguished point after expected O(2d/m) individual work. This construction
expects to store

√
qm/2d distinguished points in a block chain before a collision

is found; the total amount of work performed by all miners for all blocks to
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compute the discrete log is
√
qm. Each distinguished point wastes (m − 1)/m

work performed by miners who do not find the “winning” point.
We next examine several modified proof-of-work schemes based on this idea

that attempt to solve the problems of verification and wasted work.

3.2 Reducing the cost of wasted work

To reduce wasted work, we can allow miners that do not achieve the first block
to announce their blocks and receive a partial block reward. One technique is to
use the Greedy Heaviest-Observed Sub-Tree method [25] to determine consensus,
which has been adopted by Ethereum in the form of Uncle block rewards [14]. In
this consensus method, the main (heaviest) chain is defined as the sub-tree of
blocks containing the most work, rather than the longest chain. This allows stale
blocks to contribute to the security of a single chain, and allocates rewards to
their producers. In Ethereum, this supports faster block times and lowers orphan
rates but we could use it to incentivize miners to publish their useful work rather
than discard it when each new block is found.

3.3 Limiting the length of the pseudorandom walk

We attempt to reduce the cost of the Verify function by limiting the length of
the random walk in a proof to at most 2` steps for some integer `. Individual
miners derive a starting point from the challenge c and a random nonce n. They
walk until they either find a distinguished point or pass 2` steps. In the latter
case, the miner chooses another random nonce n and restarts the walk.

Solve requires miners to produce a proof π = (n,L, aD, bD) satisfying four
criteria: (1) the walk begins at the point derived from a hash of the challenge
and nonce values ((a0, b0) = H(c||n)), (2) walking from this initial point for L
steps leads to the specified endpoint (WL(ga0hb0) = gaDhbD), (3) the bitwise
representation of the endpoint gaDhbD is distinguished and (4) the walk does not
exceed the maximum walk length (L < 2`). Solve runs in expected time O(2d).

Verify retraces the short walk and runs in O(2`) steps. Overall, fixing a
maximum walk length forces more total work to be done, since walks over 2`

steps are never published. The probability that a length 2` random walk contains
a distinguished point of difficulty d is 2`−d, so a prover expects to perform 2d−`

random walks before finding a distinguished point. An individual prover in a
group of order q can expect to store O(

√
q/2`) distinguished points before a

collision is found. With 2d work performed per distinguished point stored, the
total amount of work is O(2d−`

√
q). For m� 2d−` miners working in parallel,

the work wasted by parallel mining is subsumed by that of discarded long walks.
To target a 160-bit group with mining power of around 290 hashes per year,

the total amount of work performed by miners should not exceed 290 ≥ 2d−`280,
or 10 ≥ d−`, with a total of 280−` distinguished points. If we allow 1 GB = 8 ·109

storage, this allows up to 225 160-bit distinguished points, so we have ` = 55,
and thus we set the difficulty d = 65. This is feasible: as of Sep 2018, Bitcoin
miners produce nearly 275 hashes per block and the blockchain is ∼183 GB.
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3.4 Efficiently verifying pseudorandom walks

In theory, a SNARK [7] solves the efficient verification problem for the proof
of work. Provers compute the SNARK alongside the pseudorandom walk, and
include the result with the proof of work. Verification executes in constant time.
Unfortunately, generating a SNARK is thousands of times more expensive than
performing the original computation. A STARK [5] takes much less work to solve
but slightly longer to verify and comes with a non-negligible space trade-off. In
our framework, Solve finds a distinguished point and build a STARK: this takes
time O(d222d) and space O(d2d) group elements. Verify executes the STARK
verify function in time O(d). Verifiable delay functions [9] could also be used to
solve this problem, but existing solutions appear to take advantage of algebraic
structure that we do not have in our pseudorandom walk.

We attempted to emulate a verifiable delay function by defining an alternate
pseudorandom walk. We experimented with several possibilities, for example
a “rotating” walk that performs a set of multiplications and exponentiations
in sequence. A walk of this type has the convenient algebraic property that it
is simple to verify for a given start point, end point, and length L, that the
end point is L steps from the start. Unfortunately, it has terrible pseudorandom
properties: collisions are either trivial or occur after O(q) steps. There appears to
be a tension between the pseudorandomness properties required for the Pollard
rho algorithm to achieve O(

√
q) running time and an algebraic structure allowing

efficient verification of the walk. Effective random walks determine each step by
the bitwise representation of a given element—independent of its group element
representation gaihbi—but this independence makes it difficult to reconstruct or
efficiently summarize the group steps without repeating the entire computation.
We leave the discovery of such a pseudorandom walk to future work.

3.5 Distributed verification

An alternate block chain formulation has miners accept blocks unless they see
a proof that it is invalid, and incentivizes other validators to produce such
proofs. This technique has been proposed for verifying off-chain transactions in
Ethereum Plasma [23]. We extend this idea to allow validators to prove a miner
has submitted an invalid block and offer rewards for such discoveries.

In this scheme, the Verify function accompanies a reject decision with a proof
of falsification f , and can take as long as mining: Õ(t(n)). We define a function
Check(c, f) to check whether this proof of falsification is accurate, which runs in
time Õ(n). In a block chain, miners Solve proofs of work and dedicated verifiers
Verify. If a verifier produces a proof of falsification f (that is, finds an invalid
block) it broadcasts (c, f) to all participants, who must Check the falsification.

To increase verification cost, there must be a matching increase in incentive.
For example, a time-delayed bounty system requires a miner to provide a bounty
with each new block, which is either collected by the miner with the block reward
after a fixed amount of time, or partially poached by a verifier who produces a
valid falsification. Such a scheme aims to prevent collusion between miners and
verifiers to collect rewards and bounty for no useful work.
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Walk summaries. A first idea modifies the proof of work π to include inter-
mediate points s0, s1, . . . spaced at regular intervals along the walk. The Verify
function picks a random subset of the si and retraces the walks from si to si+1.
An invalid proof has the property that at least one interval does not have a valid
path between the endpoints. For a walk with I intervals of length `, a verifier
that checks k intervals has probability k/I of detecting an invalid proof with
work kI. However, checking a claimed falsification f requires ` work. A malicious
verifier can report incorrect falsifications and force other participants to perform
arbitrary work. To fix this, we need more efficiently checkable falsifications.

Bloom filters for secondary validation. One approach to efficiently checkable
proof falsifications uses Bloom filters [8], a probabilistic data structure that tests
set membership. It may return false positives, but never false negatives. We
modify our walk summary proof of work π above to also include a Bloom filter
containing every point on the walk. The Verify function chooses a random interval
si and takes ` walk steps, which takes work `. If an element ei on the walk is absent
from the filter, the verifier broadcasts the sequence of points f = (ei−k, . . . , ei).
The Check function confirms that the points f are a correctly generated random
walk and that all points except ei are contained in the Bloom filter. This takes
time k. The short sequence prevents a malicious verifier from invalidating a
correct block by taking advantage of false positives in Bloom filters.

A Bloom filter containing every element in a random walk for a reasonable
difficulty value will be too large (we estimate at least 150 TB for a walk of length
260). To shrink the filter, we could store hashes of short sub-walks of length `′,
rather than every step. To Check, a participant must walk `′ steps for each of
the k broadcast sub-walks. This increases the work to k`′, but decreases Bloom
filter size by a factor of `′.
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