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Abstract. We present new protocols for Byzantine agreement in the
synchronous and authenticated setting, tolerating the optimal number of
f faults among n = 2f+1 parties. Our protocols achieve an expected O(1)
round complexity and an expected O(n2) communication complexity. The
exact round complexity in expectation is 10 for a static adversary and
16 for a strongly rushing adaptive adversary. For comparison, previous
protocols in the same setting require expected 29 rounds and expected
Ω(n3) communication.

1 Introduction

Byzantine agreement [27] is a fundamental problem in distributed computing and
cryptography. It has been used to build fault tolerant distributed systems [4,9,25,
38], secure multi-party computation [6,20], and more recently cryptocurrencies [3,
24,31,33]. In Byzantine agreement, a group n parties, each holding an initial input
value, hope to commit on a common value; up to f parties can have Byzantine
faults and deviate from the protocol arbitrarily. In a closely related problem
called Byzantine broadcast, instead of each party holding an input value, there is
one designated sender who tries to broadcast a value; To rule out trivial solutions,
both problems have additional validity requirements.

Byzantine agreement and Byzantine broadcast have been studied under various
combinations of assumptions, most notably timing assumptions – synchrony,
asynchrony or partial synchrony, and setup assumptions – cryptography and
public-key infrastructure (PKI). It is now well understood that these assumptions
drastically affect the fault tolerance bounds. In particular, Byzantine broadcast
and Byzantine agreement both require f < n/3 under partial synchrony or
asynchrony. But under synchrony with digital signatures and PKI, Byzantine
agreement can be solved with f < n/2 while Byzantine broadcast can be solved
with f < n− 1.

In this paper, we consider Byzantine agreement in the synchronous and au-
thenticated (i.e., assuming digital signatures and PKI) setting. The efficiency



metrics we consider are (1) round complexity, i.e., the number of rounds of com-
munication before the protocol terminates, and (2) communication complexity,
i.e., the amount of information exchanged between parties during the protocol.
For convenience, we measure communication complexity using the number of
signatures exchanged between parties. Assuming each signature has λ bits, multi-
plying our communication complexity by λ yields the asymptotic communication
complexity in bits.

In the synchronous and authenticated setting, Dolev and Strong gave a
deterministic Byzantine broadcast protocol for f < n − 1 [13]. Their protocol
achieves f+1 round complexity and O(n2f) communication complexity. The f+1
round complexity matches the lower bound for deterministic protocols [13,16]. To
further improve round complexity, randomized protocols have been introduced [5,
15, 18, 36]. The most efficient protocol to our knowledge is proposed by Katz and
Koo [22], which solves Byzantine agreement for f < n/2 using expected O(n3)
communication and expected O(1) rounds, and to be precise, expected 29 rounds.

In this work, we improve communication complexity to expected O(n2) and
round complexity to expected 16. To the best of our knowledge, our protocol is
the first to simultaneously achieve (i) expected O(1) rounds, (ii) expected O(n2)
communication, and (iii) optimal fault tolerance of n = 2f + 1 for synchronous
and authenticated Byzantine agreement. In fact, we do not know of any existing
protocol that achieves both (ii) and (iii).

Our protocols use threshold signatures [8, 37] to reduce communication com-
plexity and a random leader election subroutine to reduce round complexity.
The random leader election subroutine can be constructed using common-coin
protocols [8, 30], and there exist constructions with a single round and O(n2)
communication in the literature. The protocol by Cachin et al. [8] is secure
against a static adversary whereas the protocol by Loss and Moran [30] are secure
against an adaptive adversary. With these, we achieve the following result.

Theorem 1. Synchronous authenticated Byzantine agreement can be solved for
f < n/2 with

– expected 10 rounds and expected O(n2) communication against a static ad-
versary assuming a single-round common-coin protocol,

– expected 16 rounds and expected O(n2) communication against a strongly rush-
ing adaptive adversary assuming an adaptively secure single-round common-
coin protocol.

It is worth noting that our protocols work even in the presence of a very
powerful adversary, which we call a strongly rushing adaptive adversary. The
adversary can adaptively decide which f parties to corrupt and when to corrupt
them. And by “strongly rushing”, we mean that if the adversary decides to
corrupt a party h after observing messages sent from h to any other party in
round r, it can remove h’s round-r messages from the network before they reach
other honest parties. In comparison, a standard rushing adversary can decide
its own round-r messages after learning honest parties’ round-r messages, but



if it corrupts h in round r, it cannot “take back” or alter h’s round-r messages
to other parties. The Dolev-Strong and Katz-Koo protocols also work against
such a strongly rushing adaptive adversary. Alternatively, random leader election
can also be achieved using verifiable random functions [31], albeit to achieve
expected O(1) rounds only against a rushing (but not strongly rushing) adaptive
adversary.

The O(1) expected round complexity is clearly asymptotically optimal. A
natural question is whether the expected quadratic communication can be further
improved. Building on a work by Dolev and Reischuk [12], we show that Ω(n2)
expected messages are necessary against a strongly rushing adaptive adversary.

Theorem 2. If a protocol solves Byzantine broadcast with 1
2 + ε probability

against a strongly rushing adaptive adversary, then in expectation, honest parties
need to send at least (εf/2)2 messages.

We show a proof of this theorem in a subsequent draft [1]. Note that even
though the lower bound is stated for Byzantine broadcast, it applies to Byzantine
agreement as well, because Byzantine broadcast can be achieved by having the
sender broadcast its value and then running one instance of Byzantine agreement.

1.1 Related Work

Byzantine agreement and broadcast were first introduced by Lamport, Shostak
and Pease [27,35]. They presented protocols and fault tolerance bounds for two
settings (both synchronous). Without cryptographic assumptions (the unauthen-
ticated setting), Byzantine broadcast and agreement can be solved if and only
if f < n/3. Assuming digital signatures (the authenticated setting), Byzantine
broadcast can be solved if f < n − 1 and Byzantine agreement can be solved
if and only if f < n/2. The protocols from [27, 35] had exponential message
complexities. Fully polynomial protocols were later shown for both the authen-
ticated (f < n/2) [13] and the unauthenticated (f < n/3) [19] settings. Both
protocols require f + 1 rounds of communication, which matches the lower bound
on round complexity for deterministic protocols [13, 16]. To circumvent the f + 1
round lower bound, a line of work explored the use of randomization [5,36] which
eventually led to expected constant-round protocols for both the authenticated
(f < n/2) [22] and the unauthenticated (f < n/3) [15] settings. In the asyn-
chronous setting, the FLP impossibility [17] rules out any deterministic solution.
Some works use randomization [5,7,8] or partial synchrony [14] to circumvent
the impossibility.

We have already compared with closely related works by Dolev-Strong and
Katz-Koo. Recently, Micali and Vaikuntanathan gave a randomized protocol
that solves Byzantine broadcast for f < n/2 with 1 − 2−κ probability using
O(κ) rounds and O(n3κ) communication [32]. Their protocol does not support
early termination, so all parties always have to run for O(κ) rounds and incur
the round/communication complexity above. Table 1 summarizes related works
and compares with our results. The numbers in Table 1 have considered adding



Table 1: Comparison with closely related works. Here, κ is a security
parameter and ε is a positive constant. We assume all protocols have access to
ideal digital signatures.

Protocol
Exp. Comm. Exp. Round

Resilience
Failure

Complexity Complexity Probability

Dolev-Strong [13] O(n2f) f + 1 f < n− 1 0
Katz-Koo [22] O(n3) 29 f < n/2 0

Micali-Vaikuntanathan [32] O(n3κ) O(κ) f < n/2 2−κ

King-Saia [23] n1.5 · poly log(n) poly log(n) f < ( 1
3
− ε)n 1/poly(n)

Chan-Pass-Shi [10] n · poly log(κ) O(1) f < ( 1
2
− ε)n negl(κ)

This work (upper bound) O(n2) 16 f < n/2 0

threshold signatures to those works. For Dolev-Strong [13], there is no obvious
way to utilize threshold signatures because each round uses a different threshold:
a valid message in round k must be signed by k replicas. Katz-Koo [22] and
Micali-Vaikuntanathan [32] both invoke n instances of gradecasts in parallel.
Threshold signatures can improve one gradecast instance to O(n2), so n parallel
gradecast instances result in O(n3) communication complexity.

The King-Saia protocol [23] solves synchronous Byzantine agreement for f <
( 13−ε)n with 1/polyn failure probability and uses n1.5 ·poly log(n) communication.
Recently, Chan, Pass and Shi [10] have shown a protocol that solves binary
Byzantine agreement for f < ( 12 − ε)n with negl(κ) failure probability in expected
O(1) rounds and n·poly log(κ) communication [10]. Intuitively, both protocols save
communication by down-sampling the population into a smaller committee and
running a Byzantine agreement protocol within the committee. Their techniques
are orthogonal and complementary to our work since they still need a protocol
for the committee. Interestingly, the protocol run by the committee in Chan-
Pass-Shi is inspired by the protocol described in this work. We remark that,
given Theorem 2, it is not surprising that these sub-quadratic solutions only
work against a standard rushing adaptive adversary but not a strongly rushing
adaptive one.

1.2 Technical Overview

We first describe our core protocol, which ensures agreement (safety)6 and
termination as required by Byzantine broadcast/agreement, but provides a weak
notion of validity. Specifically, it achieves

– Termination: all honest parties eventually commit,
– Agreement/safety: all honest parties commit on the same value, and
– Validity: if all honest parties start with certificates for the same value v,

and no Byzantine party starts with a certificate for a contradictory value,
then all honest parties commit on v.

6 We will refer to the agreement requirement as “safety” for the rest of the paper.



In Section 4 we will describe how to obtain these certificates to solve Byzantine
broadcast or Byzantine agreement.

The core protocol runs in iterations. In each iteration, a unique leader is
elected. Each new leader picks up the state left by previous leaders and proposes
a value in its iteration. Parties then cast votes on the leader’s value v. In more
detail, each iteration consists of 4 rounds. The first three rounds are conceptually
similar to Paxos and PBFT: (1) the leader learns the states of the system, (2) the
leader proposes a value, and (3) parties vote on the value. If a party receives f + 1
votes for the same value and does not detect leader equivocation, it commits
on that value. We then add another round: (4) if a party commits, it notifies
all other parties about the commit; upon receiving a notification, other parties
accept the committed value and will vouch for that value to future leaders.

Ideally, if the leader is honest, all honest parties commit v upon receiving
f + 1 votes for v at the end of that iteration. A Byzantine leader can easily waste
its iteration by not proposing. But it can also perform the following more subtle
attacks: (1) send contradicting proposals to different honest parties, or (2) send
a proposal to some but not all honest parties. We must ensure these Byzantine
behaviors do not violate safety.

The need for equivocation checks. To ensure safety in the first attack, parties
engage in an all-to-all round of communication to forward the leader’s proposal
to each other for an equivocation check. If a party detects leader equivocation,
i.e., sees two conflicting signed proposals from the leader, it does not commit
even if it receives f + 1 votes.

The need for a notify round. Using the second attack, a Byzantine leader can
make some, but not all, honest parties commit on a value v. If the other honest
parties do not know that v has been committed, they may commit v′ 6= v in
a subsequent iteration. Therefore, whenever an honest party h commits on a
value v, h needs to notify all other honest parties of its commit. h can do this by
broadcasting the f + 1 votes it received. When another party h′ receives such a
notification, it “accepts” the value v. If a party has accepted v and receives a
proposal v′ 6= v in a later iteration, it will not vote for v′ unless it is shown a
proof that voting for v′ is safe. The details can be found in Section 3.

Safety, termination, and validity. Safety is preserved because when an honest
party commits, (1) no other party can commit a different value in the same
iteration (due to equivocation checks), and (2) no other value can gather enough
votes in subsequent iterations (due to notify by the honest party). Validity follows
from a similar argument: if all honest parties start the protocol with the same
certified (i.e., accepted) value v and Byzantine parties do not have a different
certified value, only v can gather enough votes. Termination is achieved when
some honest party h receives f + 1 notify messages. At this point, h sends these
f + 1 notifications to all other parties and terminates. The f + 1 notifications h
sends will ensure termination of all other parties in the next round. If an honest
leader emerges, all parties terminate in its iteration.



Round complexity and communication complexity. Since there are f + 1
honest out of 2f + 1 parties, by electing a random leader in every iteration, the
protocol terminates in 2 iterations in expectation. Depending on the adversarial
model, each iteration ranges from 4 to 7 rounds. Each round uses O(n2) messages
(all-to-all) and each message is either a single signature or a single (f+1)-out-of-n
threshold signature. Thus, the protocol runs in expected O(1) rounds and uses
expected O(n2) communication.

Paxos, PBFT, XPaxos, and our protocol. Abstractly, this core protocol
resembles the synod algorithm in Paxos [26] but is adapted to the synchronous
and Byzantine setting. The main idea of the synod algorithm is to ensure
quorum intersection [26] at one honest party. The core idea of Paxos is to form a
quorum of size f + 1 before committing a value. With n = 2f + 1, two quorums
always intersect at one party, which is honest in Paxos. This honest party in
the intersection will force a future leader to respect the committed value. In
order to tolerate f Byzantine faults, PBFT [9] uses quorums of size 2f + 1 out
of n = 3f + 1, so that two quorums intersect at f + 1 parties, among which one
is guaranteed to be honest. Similar to PBFT, we also need to ensure quorum
intersection at f + 1 parties. But this requires new techniques with n = 2f + 1
parties in total. On the one hand, an intersection of size f + 1 seems to require
quorums of size 1.5f + 1. (An subsequent work called Thunderella [34] uses this
quorums size to improve the optimistic case.) On the other hand, a quorum size
larger than f + 1 (the number of honest parties) seems to require participation
from Byzantine parties and thus loses liveness. As described in the core protocol,
our synchronous notify round forms a post-commit quorum of size 2f + 1, which
intersects with any pre-commit quorum of size f +1 at f +1 parties. This satisfies
the requirement of one honest party in the intersection. Moreover, since parties
in the post-commit quorum only receive messages, liveness is not affected.

Our protocol also shares some similarity to XPaxos [29]. In XPaxos, a view-
change involves changing a set of f + 1 active replicas (instead of only changing
the leader). So far as all the active replicas in the old view notify all the active
replicas in the new view, there will be one honest replica in the new view that
can carry state across views. However, XPaxos makes progress only if all f + 1
active replicas are honest. In comparison, our protocol only requires the leader
to be honest to make progress.

Achieving Byzantine broadcast and Byzantine agreement. The core pro-
tocol already ensures safety and termination, so we only need some technique to
boost its weaker validity to what Byzantine broadcast/agreement require. Our pro-
tocol achieves this using a single round of all-to-all communication before invoking
the protocol. This allows us to avoid the standard transformation of composing
n parallel Byzantine broadcasts to achieve Byzantine agreement. As a result, our
Byzantine agreement protocol has the same asymptotic round/communication
complexity as the core protocol.



2 Model

We assume synchrony. If an honest party i sends a message to another honest
party j at the beginning of a round, the message is guaranteed to reach by the
end of that round. We describe the protocol assuming lock-step execution, i.e.,
parties enter and exit each round simultaneously. Later in Section ??, we will
present a clock synchronization protocol to bootstrap lock-step execution from
bounded message delay.

We assume digital signatures and trusted setup. In the trusted setup phase,
a trusted dealer generates public/private key pairs for digital signatures and
other cryptographic primitives for each party, and certifies each party’s public
keys. We use 〈x〉i to denote a message x signed by party i, i.e., 〈x〉i = (x, σ)
where σ is a signature of message x produced by party i using its private signing
key. For efficiency, it is customary to sign the hash digest of a message. A
message can be signed by multiple parties (or the same party) in layers, i.e.,
〈〈x〉i〉j = 〈x, σi〉j = (x, σi, σj) where σi is a signature of x and σj is a signature

of x || σi (|| denotes concatenation). When the context is clear, we omit the
signer and simply write 〈x〉 or 〈〈x〉〉.

We require a random leader election subroutine. As mentioned, this subroutine
can be instantiated using common-coin protocols [8, 30] or verifiable random
functions [31]. It may also be left to higher level protocols. For example, a
cryptocurrency may elect leaders based on proof of work.

We assume a strongly rushing adaptive adversary. After the trusted setup
phase, the adversary can adaptively decide which f parties to corrupt and when to
corrupt each of them as the protocol executes. Note, however, that the adversary
is not mobile: it cannot un-corrupt a Byzantine party to restore its corruption
budget. The adversary is also strongly rushing. In each round, the adversary
observes any party i’s message to any other party j. If the adversary decides to
corrupt i at this point, it controls which other honest parties (if any) i sends
messages to and what messages i sends them in that round.

3 A Synchronous Byzantine Synod Protocol

3.1 Core Protocol

Our core protocol is a synchronous Byzantine synod protocol with n = 2f + 1
parties. The goal of the core synod protocol is to guarantee that all honest parties
eventually commit (termination) on the same value (agreement). In addition, it
achieves the following notion of validity: if (1) all honest parties start with the
same value and have a certificate for this value, and (2) the adversary does not
start with a certificate for a contradictory value, then all honest parties commit
on this value. In Section 4, we show how to obtain these certificates using a single
pre-round to achieve Byzantine broadcast and Byzantine agreement. For ease of
exposition, we will temporarily assume a static adversary in Section 3.1 while
presenting the core protocol. A static adversary has to decide which parties to
corrupt after the trusted setup phase and before the protocol starts.



We now describe the protocol in detail. When a leader proposes a value
v in iteration k, we say the proposal has rank k and write them as a tuple
(v, k). The first iteration has k = 1. Each party i internally maintains states
acceptedi = (vi, ki, Ci) across iterations to record its accepted proposal. Initially,
each party i initializes acceptedi := (⊥, 0,⊥). If party i later accepts (v, k), it sets
acceptedi := (v, k, C) such that C certifies that v is legally accepted in iteration
k. C consists of f + 1 commit requests for proposal (v, k) (see the protocol for
details). We also say C certifies, or is a certificate for, (v, k). Proposals are ranked
by the iteration number in which they are made. Namely, (v, k) is ranked higher
than, lower than, or equal to (v′, k′) if k > k′, k < k′ and k = k′, respectively.
Certificates are ranked by the proposals they certify. When we say a party
“broadcasts” a message, we mean it sends the message to all parties including
itself.

Round 0 (elect) All parties participate in the threshold coin-tossing scheme
from [8]. Their scheme costs a single round and outputs a random string to
all parties. The random string modulo n defines a random leader Lk for the
current iteration k. We henceforth write Lk as L for simplicity.

Round 1 (status) Each party i sends a 〈k, status, vi, ki, Ci〉i message to L to
report its current accepted value.
At the end of this round, if party i reports the highest certificate to L (i
could be L itself), L sets acceptedL = (vL, kL, CL) := (vi, ki, Ci). If no party
reports a certificate, L chooses vL freely and sets kL := 0 and CL := ⊥.

Round 2 (propose) L broadcasts a signed proposal 〈〈k, propose, vL〉L , kL, CL〉L.
At the end of this round, party i sets vL→i := vL if the certificate it receives
in the above leader proposal is no lower than what i reported to the leader,
i.e., if kL ≥ ki. Otherwise (leader is faulty), it sets vL→i := ⊥.

Round 3 (commit) If vL→i 6= ⊥, then party i forwards the proposal 〈k, propose, vL→i〉L
to all other parties and broadcasts a 〈k, commit, vL→i〉i request.
At the end of this round, if party i is forwarded a properly signed proposal
〈k, propose, v′〉L in which v′ 6= vL→i, it does not commit in this iteration
(leader has equivocated). Else, if party i receives f+1 〈k, commit, v〉j requests
in all of which v = vL→i, it commits on v and sets its internal state Ci to be
these f + 1 commit requests concatenated. In other words, party i commits
if and only if it receives f + 1 matching commit requests and does not detect
leader equivocation.

Round 4 (notify) If party i has committed on v at the end of the previous
round, it sends a notification 〈〈notify, v〉i , Ci〉i to every other party.
At the end of this round, if party i receives a 〈〈notify, v〉j , C〉j message, it

accepts v by setting acceptedi = (vi, ki, Ci) := (v, k, C). If party i receives
multiple valid notify messages with different values (how this can happen is
explained at the end of Section 3.2), it can accept an arbitrary one. Lastly,
party i increments the iteration counter k and enters the next iteration.

Early and non-simultaneous termination. At any point during the protocol,
if a party gathers notification headers (excluding certificates) 〈notify, v〉 from
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Fig. 1: An example iteration of the core protocol. In this example, f = 2, n =
2f + 1 = 5, parties 3 and 4 are Byzantine. 1. (status) Each party sends its
current states to L = 3. 2. (propose) No party has committed or accepted any
value, so L can propose any value of its choice. L equivocates and sends one
proposal to party 4 (shown by dashed red arrow) and a different proposal to
honest parties. 3. (commit) Honest parties forward L’s proposal and send commit
requests to all parties. Party 4 only sends to parties {3, 4, 5}. Parties 1 and 2
receive f + 1 commit requests for the blue value and do not detect equivocation,
so they commit. Party 5 detects leader equivocation and does not commit despite
also receiving f + 1 commit requests for the blue value. 4. (notify) Parties 1 and
2 notify all other parties. On receiving a valid notification, party 5 accepts the
blue value. 5. (status) The parties send status messages to the new leader L′ = 1
for iteration k + 1.

f + 1 distinct parties, it sends these f + 1 notification headers to all other parties
and terminates. This ensures that when the first honest party terminates, all
other honest parties receive f + 1 notification headers and terminate in the next
round.

3.2 Safety, Termination, and Validity

In this section, we prove that the core protocol in Section 3.1 provides safety,
termination and a weak notion of validity.

Safety. We first give some intuition to aid understanding. The scenario to
consider for safety is when an honest party h commits on a value v∗ in iteration



k∗. We first show that Byzantine parties cannot hold a certificate for a value
other than v∗ in iteration k∗. Thus, all other honest parties accept v∗ at the end
of iteration k∗ upon receiving notify from the honest party h. Thus, a value other
than v∗ cannot gather enough votes in iteration k∗ + 1, and hence cannot be
committed or accepted in iteration k∗+ 1, and hence cannot gather enough votes
in iteration k∗ + 2, and so on. Safety then holds by induction.

We now formalize the above intuition by proving the following lemma about
certificates: once an honest party commits, all certificates in that iteration and
future iterations can only certify its committed value.

Lemma 1. Suppose party h is the first honest party to commit and it commits
on v∗ in iteration k∗. If a certificate C for (v, k∗) exists, then v = v∗.

Proof. C must consist of f + 1 commit requests for v. At least one of these comes
from an honest party (call it h1). Thus, h1 must have received a proposal for v
from the leader, and must have forwarded the proposal to all other parties. If
v 6= v∗, h would have detected leader equivocation, and would not have committed
on v∗ in this iteration. So we have v = v∗.

Lemma 2. If at the start of iteration k, (1) every honest party i has a certificate
for (v, ki), and (2) all conflicting certificates are lower ranked, i.e, any certificate
for (v′, k′) where v 6= v′ must have k′ < ki for all honest i, then the above two
conditions will hold at the end of iteration k.

Proof. Suppose for contradiction that some party (honest or Byzantine) acquires
a higher certificate than what it had previously for v′ 6= v. Then it must receive
from one honest party (call it h) a 〈k, commit, v′〉h request in iteration k. Note
that h has a certificate for (v, kh) at the start of iteration k. In order for h to
send a commit request for v′, the leader Lk must show a certificate for (v′, k′)
such that k′ ≥ kh, which contradicts condition (2).

A simple induction shows that the above two conditions, if true at the start
of an iteration, will hold true forever.

Theorem 3 (Safety). If two honest parties commit on v and v′ respectively,
then v = v′.

Proof. Suppose party h is the first honest party to commit, and it commits on
v∗ in iteration k∗. After the notify round of iteration k∗, every honest party
receives a certificate for (v∗, k∗) and accepts v∗. Furthermore, due to Lemma 1,
there cannot be a certificate for (v, k∗) in iteration k∗ for v 6= v∗. Thus, the two
conditions in Lemma 2 hold at the end of iteration k∗. So no certificate for a
value other than v∗ can be formed from this point on. In order for an honest party
to commit on v, there must be a certificate for (v, k) where k ≥ k∗. Therefore,
v = v∗. Similarly, v′ = v∗, and we have v = v′.



Termination. We now show that an honest leader will guarantee all honest
parties terminate by the end of that iteration.

Theorem 4 (Termination). If the leader Lk in iteration k is honest, then
every honest party terminates one round after iteration k (or earlier).

Proof. The honest leader Lk will send a proposal to all parties. It will propose
a value reported by the highest certificate it collects in the status round. This
certificate will be no lower than any certificate held by honest parties. Additionally,
the unforgeability of digital signatures prevents Byzantine parties from falsely
accusing L of equivocating. Therefore, all honest parties will send commit requests
for v, receive f +1 commit requests for v, commits on v, send notification headers
for v, receive f + 1 notification headers for v (this is the end of iteration k), and
terminate in the next round. (It is possible that they receive f + 1 notification
headers and terminate at any earlier time.)

Validity. We now discuss the validity achieved by our core protocol. In the
theorem, we assume the existence of initial certificates for (v, 0) that are input
to our core protocol. These initial certificates will be provided by higher-level
protocols that invoke the core protocol (c.f. Section 4).

Theorem 5 (Validity). All honest parties will commit on v if (1) every honest
party starts with an initial certificate C certifying v, and (2) no Byzantine party
has a certificate C′ certifying v′ 6= v.

Proof. The proof is straightforward from Lemma 2 and Theorem 4. The input
constraints satisfy the two conditions for Lemma 2 with each ki = 0. Due to
Lemma 2, for all subsequent iterations, only v can have certificates and thus,
only v can be committed. By Theorem 4, when an honest leader emerges, all
honest parties will commit on v.

Finally, we mention an interesting scenario that does not have to be explicitly
addressed in the proofs. Before any honest party commits, Byzantine parties may
obtain certificates for multiple values in the same iteration. In particular, the
Byzantine leader proposes two values v and v′ to all the f Byzantine parties. (An
example with more than two values is similar.) Byzantine parties then exchange f
commit requests for both values among them. Additionally, the Byzantine leader
proposes v and v′ to different honest parties. Now with one more commit request
for each value from honest parties, Byzantine parties can obtain certificates for
both v and v′, and can make honest parties accept different values by showing
them different certificates (notify messages). However, this will not lead to a
safety violation because no honest party would have committed in this iteration:
the leader has equivocated to honest parties, so all honest parties will detect
equivocation from forwarded proposals and thus refuse to commit. This scenario
showcases the necessity of both the synchrony assumption and the use of digital
signatures for our protocol. Lacking either one, equivocation cannot be reliably
detected and any protocol will be subject to the f < n/3 bound. For completeness,



we note that the above scenario will not lead to a violation of the termination
property, either. At the end of the iteration, honest parties may accept either
value. But in the next iteration, they can still vote for either value despite having
accepted the other, since the two values have the same rank.

3.3 Random Leader Election against an Adaptive Adversary

The protocol presented so far does not achieve expected constant rounds against
an adaptive adversary. The adversary learns who the leader L is after the elect
round in an iteration. It can then immediately corrupt L and prevent it from
sending any proposal. This way, the adversary forces the protocol to run for f
iterations.

A first modification towards adaptive security is to move the elect round
after the propose round and before the commit round. The hope is that, by the
time L is corrupted, all honest parties have already received its proposal. This
means every party should act as a potential leader before Lk is revealed, i.e.,
in status and propose rounds to collect status and make a proposal. From the
commit round onward, only L’s proposal is relevant.

However, this idea alone is not sufficient. At the end of the elect round,
after learning the identity of L, the adversary corrupts L, signs an equivocating
proposal using L’s secret key and forwards it to all honest parties. Honest parties
will detect equivocation from L and will not commit in this iteration. We are
again forced to run the protocol for f iterations.

To this end, we need to add a step for each party to “prepare” its proposal
before the leader is revealed. Afterwards, only “prepared” proposals are considered
in equivocation checking. The prepare step should guarantee that, if a party h
is honest throughout the prepare process but becomes corrupted afterwards, an
adversary cannot construct a “prepared” equivocating proposal on h’s behalf.
We achieve the prepare step in two rounds as follows.

Round P1 (prepare1) Each party i broadcasts its proposal 〈vi, k〉i.
Round P2 (prepare2) If party j receives a proposal 〈vi, k〉i from party i in the

previous round, party j signs the proposal and sends 〈vi, k〉j back to party i.

We say a proposal (vi, k) is prepared if it carries f + 1 signatures from distinct
parties. Each honest party will be able to prepare its proposal. If party i is honest
in the two prepare rounds and becomes corrupted only afterwards, preparing a
conflicting proposal on party i’s behalf requires forging at least one honest party’s
signature, which a computationally bounded adversary cannot do.

The core protocol against a strongly rushing adaptive adversary now has 7
rounds: status, prepare1, prepare2, propose, elect, commit, and notify. Proofs for
safety and validity remain unchanged from the static case. Proof of termination
and round complexity analysis also hold once we observe that (1) there is a > 1/2
chance that each leader Lk is honest up to the point at which it is revealed, (2)
if Lk is still honest by the end of the propose round of iteration k, all honest
parties will consider its proposal valid and terminate one round after iteration k.



We remark that leader election based on verifiable random function [31],
when combined with our prepare rounds, achieves expected 2 iterations against a
(normal) rushing adaptive adversary. But it will run into f iterations against a
strongly rushing adaptive adversary, who can prevent a leader from announcing
its rank after receiving it.

3.4 Round Complexity and Communication Complexity

The first honest leader will ensure termination. The random leader election
subroutine ensures a (f + 1)/(2f + 1) > 1/2 probability that each leader is
honest, so the core protocol terminates in expected 2 iterations, plus one extra
round to forward f + 1 notify. Thus, if an iteration requires r rounds, our core
protocol requires 2r + 1 rounds to terminate in expectation. If the adversary
is adaptive and strongly rushing, each iteration requires r = 7 rounds. If the
adversary is adaptive and normal rushing, the elect round can happen in parallel
to propose, and each iteration has r = 6 rounds. If the adversary is static (rushing
or otherwise), we do not need the two prepare rounds, and the elect round can
happen in parallel to either status or propose, giving r = 4 rounds per iteration.

Next, we analyze the communication complexity. We will show that each
round consumes O(n2) communication. Hence, the core protocol requires expected
O(n2) communication (whether the adversary is adaptive or static, rushing or
not). First of all, note that although a certificate consists of f + 1 signatures, its
size can be reduced to a single signature using threshold signatures [8, 21, 28, 37].

1. In the status round, every party is reporting its currently accepted certificate
to every other party (every party can potentially be the leader since the
leader identity has not been revealed).

2. In prepare1, every party sends a signed proposal, which is O(1) in size, to
every other party.

3. In prepare2, every party sends back a doubly signed proposal, which is O(1)
in size, to every other party.

4. In the propose round, every party sends a proposal, which carries a certificate,
to every other party. (A proposal need not contain status messages, following
the suggestion of the HotStuff protocol [2]).

5. In the elect round, the common-coin protocol by Loss and Moran [30] requires
O(n2) communication.

6. In the commit round, every party sends an O(1)-sized commit message to
every other party.

7. In the notify round, every party sends a notify message, which carries a
certificate, to every other party.

8. Lastly, before termination, every party sends f + 1 notification headers
〈notify, v〉, which can be reduced to a single threshold signature, to every
other party.



4 Byzantine Broadcast and Agreement

In this section, we describe how to use the core protocol to solve synchronous
authenticated Byzantine broadcast and agreement for the f < n/2 case. For both
problems, we design a “pre-round” to let honest parties obtain initial certificates
and then invoke the core protocol.

Byzantine broadcast. In Byzantine broadcast, a designated sender tries to
broadcast a value to n parties. A solution needs to satisfy three requirements:

(termination) all honest parties eventually commit,
(agreement) all honest parties commit on the same value, and
(validity) if the sender is honest, then all honest parties commit on the
value it broadcasts.

Let Ls be the designated sender. In the pre-round, Ls broadcasts a signed value
〈vs〉Ls

to every party. Such a signed value by the sender is an initial certificate
certifying (vs, 0). We then invoke the core protocol. Safety and termination are
satisfied due to Theorems 3 and 4. If the designated sender is honest, each honest
party has a certificate for (vs, 0) and no conflicting initial certificate can exist,
satisfying the condition for Theorem 5. Thus, validity is satisfied.

Byzantine agreement. In Byzantine agreement, every party holds an initial
input value. A solution needs to satisfy the same termination and agreement
requirements as in Byzantine broadcast. There exist a few different validity
notions. We adopt a common one known as strong unanimity [14]:

(validity) if all honest parties hold the same input value v, then they all
commit on v.

In the pre-round, every party i broadcasts its value 〈vi〉i. f + 1 signatures
from distinct parties for the same value v form an initial certificate for (v, 0).
We then invoke the core protocol. Safety and termination are satisfied due to
Theorems 3 and 4. If all honest parties have the same input value, then they
will have an initial certificate for v and no conflicting initial certificate can exist,
satisfying the condition for Theorem 5. Thus, validity is satisfied.

The efficiency of the protocols is straightforward given the analysis of the
core protocol. Both protocols require one more round than the core protocol and
the same O(n2) communication complexity as the core protocol.

5 Clock Synchronization

An important question is how practical the synchrony assumption is, which will
be the topic of this section. The synchrony assumption essentially states that
all honest replicas’ messages arrive in time. This requires two properties: (i) a



bounded message delay and (ii) locked step execution, i.e., honest replicas enter
each round roughly at the same time. The second property is important because,
if replica i enters a round much earlier than replica j, then i may end up finishing
the round too soon without waiting for j’s message to arrive. In our protocol, for
example, this could prevent i from detecting leader equivocation and result in a
safety violation.

The XFT paper provided some justification for the bounded message delay
assumption in certain applications [29]. But we still need a mechanism to enforce
locked step execution. To this end, we will use the following clock synchronization
protocol, which may be interesting outside Byzantine agreement. It is a variation
of the clock synchronization protocol by Dolev et al. [11]. The key change is
to have parties sign independently in parallel (as opposed to sequentially) to
facilitate the use of threshold signatures.

The protocol will be executed at known time intervals. We call each interval
a “day”.

Round 0 (sync) When party i’s clock reaches the beginning of day X, it sends
a 〈sync, X〉i message to all parties including itself.

Round 1 (new-day) The first time a party j receives f + 1 〈sync, X〉 messages
from distinct parties (either as f +1 separate sync messages or within a single
new-day message), it
• sets its clock to the beginning of day X, and
• sends all other parties a new-day message, which is the concatenation of
f + 1 〈sync, X〉 messages from distinct parties.

The above protocol bootstraps lock-step synchrony from the message delay
bound ∆ and a clock drift bound. Each sync message is triggered by a party’s own
local clock, independent of when day X would start for other parties. The f + 1
sync messages can be replaced with a threshold signature for better efficiency.
The protocol refreshes honest parties’ clock difference to at most the message
delay bound ∆ at the beginning of each day. The first honest party to start a
new day will broadcast a new-day message, which makes all other honest parties
start the new day within ∆ time. Obtaining a new-day message also means at
least one honest party has sent a valid sync message, ensuring that roughly one
day has indeed passed since the previous day. We can then set the duration of
each round to 2∆+ φ where φ is the maximum clock drift between two honest
parties in a “day”.
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