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Abstract. We are increasingly surrounded by numerous embedded systems
which collect, exchange, and process sensitive and safety-critical information.
The Internet of Things (IoT) allows a large number of interconnected devices to
be accessed and controlled remotely, across existing network infrastructure. Con-
sequently, a remote attacker can exploit security vulnerabilities and compromise
these systems. In this context, remote attestation is a very useful security service
that allows to remotely and securely verify the integrity of devices’ software state,
thus allowing the detection of potential malware on the device. However, current
attestation schemes focus on detecting whether a device is infected by malware
but not on disinfecting it and restoring its software to a benign state.
In this paper we present HEALED – the first remote attestation scheme for em-
bedded devices that allows both detection of software compromise and disinfec-
tion of compromised devices. HEALED uses Merkle Hash Trees (MHTs) for
measurement of software state, which allows restoring a device to a benign state
in a secure and efficient manner.

1 Introduction
Embedded devices are being increasingly deployed in various settings providing dis-
tributed sensing and actuation, and enabling a broad range of applications. This pro-
liferation of computing power into every aspect of our daily lives is referred to as the
Internet of Things (IoT). Examples of IoT settings range from small deployments such
as smart homes and building automation, to very large installations, e.g., smart factories.
Similarly, an embedded or (IoT device) may constitute a low-end smart bulb in a smart
home or a sophisticated high-end Cyber-Physical System (CPS) in a smart factory.

Increasing deployment and connectivity combined with the collection of sensitive
information and execution of safety-critical (physical) operations has made embed-
ded devices an attractive target for attacks. Prominent examples include: the Stuxnet
worm [36], the Mirai botnet [10], the HVAC attack [1] and the Jeep hack [2]. One com-
mon feature of such attacks is that they usually involve modifying the software state of
target devices. This is referred to as malware infestation.

Remote attestation has evolved as a security service for detecting malware infes-
tation on remote devices. It typically involves a standalone (or network of) prover de-
vice(s) securely reporting its software state to a trusted party denoted by verifier. Sev-
eral attestation protocols have been proposed based on trusted software for securing the



measurement and reporting of a prover’s software state [14, 17, 20, 32–34], on trusted
hardware [19, 21, 22, 27, 29, 31, 35], or on software/hardware co-design [12, 13, 18]. In
the recent years, several collective attestation schemes have been proposed that enable
efficient attestation of large networks of devices [5, 8, 15, 16].

While prior remote attestation schemes focus on detection of malware infestation
on prover devices, the problem of disinfecting a prover, i.e., restoring its software to
a benign state, has been totally overlooked. Prior remote attestation schemes usually
focus on malware presence detection and consider the reaction policy to their presence
to be out of scope. In this paper we present HEALED – HEaling & Attestation for
Low-end Embedded Devices – which is the first attestation scheme that provides both
detection and healing of compromised embedded devices. HEALED is applicable in
both standalone and network settings. It allows measuring the software state of a device
based on a novel Merkle Hash Tree (MHT) construction.

Main contributions of this paper are:

– Software Measurement: HEALED presents a novel measurement of prover’s soft-
ware state based on MHT which allows the verifier to pinpoint the exact software
blocks that were modified.

– Device Healing: HEALED enables disinfecting compromised provers by restoring
their software to a genuine benign state.

– Proof-of-concept Implementation: We implemented HEALED on two recent secu-
rity architectures for low-end embedded devices as well as on our small network
testbed composed of 6 Raspberry Pi-based drones.

– Performance Evaluation: We provide a thorough performance and security evalua-
tion of HEALED based on our implementations and on network simulations.

2 HEALED
In this section, we present the system model, protocol goals, and a high-level overview
of HEALED.

2.1 System Model

Our system model involves a group of two or more devices with a communication path
between any two of them. A device class refers to the set of devices with the same
software configuration. We denote by s be the number of devices in the smallest class.
A device (regardless of its class) is denoted by Di. Whenever a device Dv wants to
attest another device Dp, we refer to the former as prover, and to the latter as verifier.
As common to all current attestation schemes, we assume that Dv has prior knowledge
of the expected benign software configuration of Dp. We also assume that Dv and Dp
share a unique symmetric key kvp.3 Devices can be heterogeneous, i.e., have different
software and hardware. However, all devices satisfy the minimal hardware requirements
for secure remote attestation (see Section 2.2). Moreover, each device Dc can always
find a similar device Dh with the same software/hardware configuration.

3 In the case of networks of embedded devices, we rely on the initialization protocol of existing
collective attestation schemes for sharing software configurations and symmetric keys between
devices [8].
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The goal of HEALED is to detect and eliminate malware on a device. HEALED
consists of two protocols: (1) an attestation protocol between Dv and Dp, through which
a verifier device Dv assesses the software state of a prover device Dp, and (2) a healing
protocol between two similar devices Dh and Dc, through which a healing device Dh
restores the software of a compromised device Dc to a benign state. Software state of
a device refers to its static memory contents and excludes memory locations holding
program variables.

2.2 Requirements Analysis

Threat Model. Based on a recent classification [4], we consider two types of adver-
saries:

1. Local communication adversary: has full control over all communication channels,
i.e., it can inject, modify, eavesdrop on, and delay all packets exchanged between
any two devices.

2. Remote (software) adversary: exploits software bugs to infect devices, read their
unprotected memory regions, and manipulate their software state (e.g., by injecting
malware).

We assume that every device is equipped with minimal hardware required for secure
remote attestation, i.e., a read only memory (ROM) and a simple Memory Protection
Unit (MPU) [12]. A remote software adversary cannot alter code protected by hardware
(e.g., modifying code stored in ROM), or extract secrets from memory regions protected
by special rules in the MPU. These memory regions are used to store cryptographic
secrets and protocol intermediate variables.

Key Observation. Let Benign(ta,Dx,Dy) denote “device Dx believes that device
Dy is not compromised at ta, Equal(ta,Dx,Dy) denote “device Dx and device Dy
have the same software state at time ta. We make the following key observation:

– Healing: if two devices Dx and Dy have the same software state, then either both
are benign or both are compromised.

∀x ∀y ∀y ∀ta Equal(ta,Dy,Dz)
∧ Benign(ta,Dx,Dy)→ Benign(ta,Dx,Dz)

Consequently, healing can be supported by letting similar devices (i.e., devices having
the same software configuration) attest and recover each other.

Objectives. A remote attestation protocol should not only detect presence of malware
on a compromised devices, it should also identify exact regions in memory, where the
malware resides in order to eliminate it. Consequently, a remote attestation protocol
should have the following properties:

– Exact measurements: The measurement process on the prover should be capable of
detecting software compromise and determining exact memory regions that have
been manipulated.
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Fig. 1: HEALED in a group of 5 devices.

– Healing: The protocol should allow secure and efficient disinfection of compro-
mised devices, i.e., enable restoring the software of a compromised device to a
benign state with low overhead.

Requirements. A verifier device Dv shares a symmetric key kvp with every prover de-
vice Dp that it needs to attest. Similarly, every healer device Dh shares a symmetric key
khc with every compromised device Dc that it heals, i.e., every device Di shares a key
with some (or all) similar devices. For brevity we assume that all devices in the group
share pairwise symmetric keys. This assumption applies to small groups of device and
is indeed not scalable. To achieve better scalability, keys and software configurations
management might follow the design of collective attestation [8, 16]. Every device that
is involved in one of the protocols, i.e., Dv , Dp, Dh, and Dc supports a lightweight trust
anchor for attestation, e.g., devices are equipped with a small amount of ROM and a
simple MPU. During the execution of the attestation and healing protocols there should
exist a communication path (or logical link) between Dv and Dp and between Dh and
Dc respectively.

2.3 High Level Protocol Description

We now present a high level description of HEALED based on the example scenario
shown in Figure 1. The figure shows a group of five devices D1–D5, in addition to 3
communication nodes that are responsible for relaying messages between devices, e.g.,
routers. HEALED incorporates two protocols:

– attest: At predefined intervals, each device (e.g., D1 in Figure 1) acts as a verifier
device and attests a random prover device (e.g., D2). The prover uses a MHT-based
measurement to report its software state. If a software compromise is detected by
the verifier it initiates the healing protocol heal for the prover. The output of attest
is a bit b1 indicating whether attestation of Dp was successful.

– heal: When a compromised prover device (e.g., D2) is detected, a benign healer
device (e.g., D4), which is similar to the prover, is identified. The healer uses the
MHT-based measurement to pinpoint corrupted memory regions on the prover and
restore them to their original state. The result of heal is a bit b2 indicating whether
healing by Dh was successful.
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Fig. 2: Protocol attest

2.4 Limitations

HEALED has some limitations in terms of system model, adversary, and application
that we briefly described below:

– System model: HEALED is applicable to a set of devices under the same adminis-
trative control, e.g., devices in a smart home. Extending it to a more generic model,
e.g., across multiple IoT environments, might require involving public key cryptog-
raphy and using device manufacturers as certification authorities. Moreover, gate-
ways between multiple networks would need to be configured to exchange protocol
messages.

– Adversary model: HEALED assumes that, at all times, at least one device of each
class is not compromised, i.e., at most s − 1 devices can be compromised at the
same time.

– Application: HEALED provides secure and efficient detection and disinfection of
compromised devices. However, it neither guarantees successful disinfection, nor
does it prevent subsequent compromise of these devices.

3 Protocol Description
As mentioned earlier, HEALED includes the following protocols executed between de-
vices acting as verifier Dv , prover Dp, healer Dh, and compromised device Dc.

Attestation. As shown in Figure 2, each device Dv periodically acts as a verifier and
attests a random device Dp acting as prover. Specifically, every tA amount of time,
Dv sends Dp an attestation request containing a random nonce Np. Upon receiving
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Fig. 3: Merkle Hash Tree of software configurations

the request Dp measures its software state, and creates a MAC µvp over the generated
measurement c′p and the received nonce based on the key kvp shared with Dv . The MAC
µvp is then sent back to Dv . Having the reference benign software configuration cp of
Dp and the shared key kvp, Dv can verify µvp. Successful verification of µvp by Dv
implies that Dp is in a benign software state. In this case attest returns b1 = 1. On the
contrary, if µvp’s verification failed, Dv deduce that Dp is compromised and initiates
the healing protocol for Dp. In this case attest returns b1 = 0.

The measurement of software state on Dp is created as a root of a Merkle Hash Tree
(MHT) [23], as shown in Figure 3. In particular, Dp divides the code to be attested into
w segments: s1, . . . , sw of equal length, and computes hashes: hp[x2 + 1], . . . , hp[x] of
each segment. A MHT is then constructed, with hp[x2 + 1], . . . , hp[x] as leaves and c′p
as the root, where x denotes the number of nodes in the MHT excluding the root node.
Note that, a malware-infected code segment (e.g., sw−3), leads to generation of false
hash values along the path to the root. attest is formally:

attest
[
Dv : kvp, cp, tA;Dp : kvp; ∗ : −

]
→

[
Dv : b1;Dp : Np

]
.

Based on attest the compromise of any device will be detected.

Healing. Whenever a device Dv detects a compromised device Dc through attest, it
searches for a healer device Dh, whose reference software configuration ch is iden-
tical to that of Dc, i.e., a Dh that has the same version of the same software of Dc.
Note that, if Dv and Dc are similar Dv directly initiates heal with Dc acting as healer
device. Otherwise, Dv broadcasts the reference software configuration cc of Dc along
with a constant (protocol specific) Time-to-Live (TTL), and a random nonce N . Every
device Di that receives this tuple (1) checks TTL, and (2) compares cc to its reference
software configuration ci. If cc and ci do not match, and TTL is not equal to zero, Di
re-broadcasts the tuple after TTL is decremented. Consequently, this tuple is flooded
across devices until TTL is exceeded or a healer device Dh is found.

When a device Dh, whose reference software configuration ch matches cc, receives
the tuple it sends a reply to Dv , which includes its current software configuration c′h,
authenticated along with the received nonce N , using a MAC based on the key kvh
shared with Dv .
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Fig. 4: Protocol heal

After proving its software trustworthiness, Dh initiates heal with Dc (as shown in
Figure 4). Note that, messages between Dh and Dc may go through Dv using the newly
established route between Dh and Dv . Dh may also exploit an existing routing protocol
to find a shorter path to Dc.

In details, Dh sends a protocol message begin to Dc. Upon receiving begin, Dc
sends its software configuration c′c and a fresh nonce Nc to Dh. Dh compares c′c to
its own software configuration c′h. If the two configurations did not match, Dh replies
requesting children hc[0] and hc[1] of c′c in the Merkle Hash Tree (MHT) rooted at c′c
(protocol message continue). Dh continues recursively requesting child nodes of every
hash that does not match its reference value (i.e., the value at the same position in Dh’s
tree) until leaf nodes are reached. Next, Dh sends a protocol message end indicating
that it has reached leaf nodes. Finally, Dh adds a code segment l , for each modified leaf
node, to the patch L, authenticates L with a MAC based on khc and sends it back to Dc.
A code segment l = {a0 , aε, s} is identified by its starting address a0 , its end address
aε, and its code s . Dc, in turn verifies L. If the verification was successful, it installs the
patch, i.e., replaces segments indicated by L with the code in L, and outputs b2 = 1.
Otherwise, Dc outputs b2 = 0. heal is formally:

heal
[
Dh : khc, c

′
h, {hh[0], . . . , hh[x]};

Dc : khc, cc, c
′
c, {hc[0], . . . , hc[x]}; ∗ : −

]
→

[
Dh : Nc;Dc : L, b2

]
.
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Device healing allows devices that have the same software configuration to recover
from malware. By refusing to participate in the healing process (e.g., not installing the
patch), Dc remains malicious and would not be able to prove its trustworthiness to other
devices.

Fig. 5: Implementation of HEALED on SMART [12]

4 Implementation
In order to demonstrate viability and evaluate performance of HEALED we imple-
mented it on two lightweight security architectures for low-end embedded devices that
provide support for secure remote attestation: SMART [12] and TrustLite [18]. We
also implemented HEALED on a testbed formed of six autonomous drones in order to
demonstrate its practicality. In this section we present the details of these implementa-
tions.

4.1 Security Architectures

SMART [12] and TrustLite [18] are two lightweight security architectures for low-end
embedded devices that enable secure remote attestation based on minimal hardware re-
quirements. These two architectures mainly require: (1) A Read-Only Memory (ROM),
which provides emutability and ensures integrity of the code it stores; and (2) A sim-
ple Memory Protection Unit (MPU), which controls access to a small region in memory
where secret data is stored. Memory access control rules of MPU are based on the value
of the program counter.

In SMART, the ROM code stores the attestation code and an attestation key, and
the MPU ensures that the attestation code has exclusive access to the attestation key. As
a consequence, only unmodified attestation code can generate an authentic attestation
report. TrustLite exploits ROM and MPU to provide isolation of critical software com-
ponents. In particular, ROM is used to ensure the integrity of a secure boot code which
has exclusive access to a securely stored platform key. TrustLite enables isolation by
initiating critical components via secure boot, which sets up appropriate memory ac-
cess rules for each component in the MPU. We implemented HEALED on SMART
replacing the attestation code in ROM, and on TrustLite as two isolated critical compo-
nents. Our prototype implementations for SMART and TrustLite are shown in Figure 5
and Figure 6 respectively.
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4.2 Implementation Details

Let Ki denote the set of all symmetric keys shared between a device Di and any other
device, and Vi denote the protocol variables processed and stored by HEALED. These
include all nodes in the Merkle Hash Tree (MHT), including the root ci. Integrity of
HEALED code is protected through ROM of SMART (see Figure 5), or secure boot
of TrustLite (see Figure 6). The secrecy of the set Ki of Di is protected by the MPU
of SMART and TrustLite (rule #1 in Figure 5 and rule #2 in Figure 6 respectively).
Further, rules #2 in SMART and #3 in TrustLite ensure that variables processed and
produced by HEALED are exclusively read- and write-accessible to HEALED’s code.

4.3 Autonomous Testbed.

In order to test and demonstrate the practicality of HEALED, we implemented and
tested it on our autonomous drones testbed. The testbed is formed of six Raspberry
Pi-based drones forming an ad-hoc network, where four of the drones are involved in
HEALED while the remaining two drones act as relay drones. The Pi-s are equipped
with a 1.2 GHz Quad-core 64-bit CPU and they are connected through a 150 MBit/s
WiFi link. Our setup is shown in Figure 7. Our implementation uses C programming
language and is based on mbed TLS [6] cryptographic library.

Fig. 6: Implementation of HEALED on TrustLite [18]

5 Performance Evaluation
HEALED was evaluated on SMART [12], TrustLite [18], and on the drones testbed.
The results of evaluation on TrustLite and the runtimes on our drones testbed are pre-
sented in this section. Results for SMART are very similar to those of TrustLite and
will therefore be omitted.

Hardware Costs. A comparison between the hardware costs of our implementation of
HEALED and that of the existing implementation of TrustLite [18] is shown in Table 1.
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Fig. 7: Testbed setup

As shown in the table, HEALED requires 15324 LUTs and 6154 registers in comparison
to 15142 LUTs and 6038 registers required by TrustLite. In other words, HEALED
incurs a negligible additional increase of 1.20% and 1.92% on the original hardware
costs of TrustLite in terms of number of LUTs and registers respectively.

Memory Requirements. TrustLite already includes all the cryptographic operation that
are involved in HEALED. Implementing HEALED on TrustLite required incorporating
the code that is responsible for handling protocol messages and generating the Merkle
Hash Tree (MHT). Further, every device Di needs to securely store gi symmetric keys
(20 bytes each), where gi corresponds to the number of devices Di is expected to attest
or heal. For every device Di, gi is upper bounded by the total number n of devices
involved in HEALED. Furthermore, Di should store the entire MHT that represents
its benign software configuration. MHT size depends on the size of the code and the
number of code segments. Each hash value is represented by 20 bytes.

Table 1: Hardware cost of HEALED

Look-up Tables Registers

TrustLite 15142 6038

HEALED 15324 6154

% of increase 1.20% 1.92%

Energy Costs. We estimated the energy consumption of HEALED based on reported
energy consumption for MICAz and TelosB sensor nodes [24].4 Note that, SMART [12]
and TrustLite [18] support the same class of low-end devices that these sensor nodes
belong to. Figure 8 shows the estimated energy consumption of attest and heal as func-
tion of the number of attested and healed devices respectively. We assume 100 KB of
code divided into 128 segments.

4 It is not possible to provide accurate measurements of the energy consumption of HEALED
since our FPGA implementations of SMART and TrustLite tend to consume considerably
more energy than manufactured chips.
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Fig. 8: Energy consumption of HEALED

Energy consumption of both the healing and attestation protocols increases linearly
with the number of attested/healed devices. Moreover, this consumption can be as low
as 21 mJ for attesting then healing 4 devices.

Fig. 9: Runtime of HEALED

Simulation Results. In order to measure the runtime of HEALED we used network
simulation. We based our simulation on OMNeT++ [25] network simulator, where we
emulated cryptographic operations as delays based on measurements we made for these
operations on SMART [12] and TrustLite [18]. We measured the runtime of attest and
heal for different number of attested/healed devices. We also varied the number of hops
between the compromised device and the healer, as well as the number w of segments
the attested code is divided into. The results of our simulation are shown in Figure 9,
10, and 11.

As shown in Figure 9 runtimes of attest and heal increase linearly with the number
of attested and healed devices respectively. Further, these runtimes can be as low as
0.6 s for attesting then healing 4 devices.

Figure 10 shows the runtime of heal when the attested code is divided into 128
segments. As can be seen in the figure, the runtime of heal increases linearly with the
number of hops between the healer Dh and the compromised device Dc. Finally, Fig-
ure 11 shows the run-time of heal and getConfig (i.e., time needed to create the Merkle
Hash Tree) when Dh and Dc are 10 hops away. As shown in the figure, the runtime
of heal is logarithmic in the number of segments, while getConfig has a low run-time
which is linear in the number of segments.
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Note that, runtime of heal decreases with the number of segments, due to consequent
decrease in code that should be transferred to Dc. Increasing the number of segments
indeed increases the number of rounds of heal by increasing the size of MHT. However,
the effect of this increase on the performance of heal is overshadowed by the huge
reduction in the communication overhead.

Our simulation results also show that the runtimes of heal and attest are constant
in the size of the network. These results are omitted due to space constraints. On the
other hand, increasing the size of the network while keeping the number of similar
devices constant could increase the expected number of hops between a healer Dh and
a compromised device Dc. This would indeed lead to an increase in the runtime of heal
(see Figure 10).

Fig. 10: Runtime of heal as function of number of hops

Drones Testbed. We also measured the runtime of HEALED on our drones testbed
shown in Figure 7. These runtimes are smaller than those of TrustLite since our Rasp-
berry Pi-s utilize a much more powerful processor. The runtime of attest on drone D2

attesting drones D1 and D3 is 11 ms, and the runtime of heal on drone D1 healing drone
D4 through one relay node is 34 ms. Note that, the attested code is 100 KB in size and
is divided into 128 segments. Further, these runtimes are averaged over 100 executions.

6 Security Consideration

Recall that the goal of HEALED is to allow secure detection and disinfection of com-
promised devices. We formalize this goal as a security experiment ExpA, where the ad-
versary A interacts with involved devices. In this experiment A compromises the soft-
ware of two similar devices Dc and Dh. Then, after a polynomial number (in `mac, `hash,
and `N ) of steps byA, one verifier device Dv outputs its decision b1 signifying whether
Dc is benign. The compromised device Dh executes heal with Dc which outputs b2 sig-
nifying whether healing was successful. The result of the experiment is defined as the
OR of outputs b1 and b2 of Dv and Dc respectively, i.e., ExpA = b | b = b1 ∨ b2. A
secure attestation & healing scheme is defined as follows:
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Definition 1 (Secure attestation & healing). An attestation & healing scheme is secure
if Pr

[
b = 1|ExpA(1`) = b

]
is negligible in ` = f(`mac, `hash, `N ), where function f is

polynomial in `mac, `hash, and `N .

Fig. 11: Runtime of heal vs. getConfig

Theorem 1 (Security of HEALED). HEALED is a secure attestation & healing scheme
(Definition 1) if the underlying MAC scheme is selective forgery resistant, and the un-
derlying hash function is collision resistant.

Proof sketch of Theorem 1. A can undermine the security HEALED by either tricking
Dv into returning b1 = 1 or tricking Dc into returning b2 = 1 We distinguish among
the following two cases:

– A attacks attest: In order for Dv to return b1 = 1 it should receive an attestation
report containing a MAC µvc = mac(kvc;Nc‖cc), where kvc is the symmetric key
shared between Dv and Dc, Nc is the fresh random nonce sent from Dv to Dc, and
cc is a benign software configuration of Dc. Consequently, A can try to: (1) ex-
tract the symmetric kvc and generate such a MAC, (2) modify the measurement
process on Dc to return a MAC over benign software configuration regardless of
the software state on Dc, (3) replay an old attestation report containing a MAC
µold = mac(kvc;Nold‖cc) over a benign software configuration cc and an old nonce
Nold, (4) forge a MAC µvc = mac(kvc;Nc‖cc) over a benign software configura-
tion cc and the current nonce Nc, or (5) modify the code on Dc in a way that is not
detectable by the measurement process. However, the adversary is not capable of
performing (1) and (2) since the secrecy of the key kvc and the integrity of the mea-
surement code are protected by the hardware of the underlying lightweight security
architecture. Moreover, since Dv is always sending a fresh random nonce, the prob-
ability of success of (3) is negligible in `N . Furthermore, the probability ofA being
able to forge a MAC as in (4) is negligible in `mac. Finally, modifying the value of
one bit of Dc’s code would change the hash value of the segment containing this
bit. This will change the hash value on the higher level in the Merkle Hash Tree
and so on leading to a different root value, i.e., a different software configuration.
Consequently, in order to perform (5)A should find at least on collision of the hash
function that is used for constructing the MHT which is negligible in `hash.
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– A attacks heal: In order for Dc to return b2 = 1 it should receive a healing message
containing a patch L and a MAC µhc = mac(khc;Nc‖L‖cc), where khc is the
symmetric key shared between Dh and Dc, Nc is the fresh random nonce sent from
Dc to Dh, and cc is a benign software configuration of Dc. Similar to attest A may
try to extract khc, modify the code responsible for generating the healing message,
replay an old healing message, forge µhc, or compromise Dh in a way that is not
detectable by the measurement process. However, because of the security of the
underlying hardware and cryptographic primitives the success probabilities of these
attacks are negligible in `mac, `hash, and `N . Indeed Dc may refuse to execute the
healing protocol or install the patch, thus remaining compromised. However, the
compromise of Dc will be detected by any subsequent attestation. One remedy
for this problem could incorporate performing a subsequent attestation for healed
devices and reporting devices that do not comply to the healing protocol.

This means that the probability of A bypassing the attestation protocol or infecting a
benign device through the healing protocol is negligible in `mac, `hash, and `N . Con-
sequently, HEALED is capable of securely detecting and disinfecting compromised
devices.

7 Related Work

Attestation. Attestation is a security service that aims at the detection of (malicious)
unintended modifications to the software state of a device. Attestation is typically real-
ized as an interactive protocol involving two entities: a verifier and a prover. Through
this protocol the prover sends the verifier an attestation report indicating its current
software state. Existing attestation schemes can be categorized into their main classes:
(1) software-based attestation [14, 17, 20, 32–34] which does not requires hardware
support, but is based on strong assumptions and provides weak security guarantees;
(2) hardware-based attestation [19, 21, 22, 27, 29, 31, 35] which provides stronger se-
curity guarantees based on complex and expensive security hardware; and (3) hybrid
attestation [12,13,18] which aims at providing strong security guarantees while impos-
ing minimal hardware costs. Additionally, recent advances have lead to the development
of attestation schemes for verifying the intergrity of networks of embedded devices –
collective attestation [5, 8, 15], and for detecting runtime attacks – control-flow attesta-
tion [3, 11, 37]. All existing attestation schemes, regardless of the type, aim at the de-
tection of software compromise and overlook the problem of disinfecting compromised
devices. These schemes usually consider the reaction policy to malware detection to be
out of scope. HEALED is, to the best of our knowledge, the first attestation scheme that
allows the detection and elimination of software compromise in both single-device and
group settings.

Software Update and Healing. There is not much of prior work on attestation that
allows the disinfection of compromised devices. SCUBA [33] leverages verifiable code
execution based on software-based attestation to guarantee an untampered execution of
a software update protocol. While SCUBA is built on top of a software-based attesta-
tion scheme that is based on unrealistic assumptions [7] to perform software update,
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HEALED leverages a lightweight security architecture to provide security guarantees
regarding efficient disinfection of compromised devices. POSH [28] is a self-healing
protocol for sensor networks which enables collective recovery of sensor nodes from
compromise. The core idea of POSH is to enable sensor nodes to continuously com-
pute new keys that are unknown to the adversary based on randomness provided by
other sensors. Consequently, an adversary that compromises a device and extracts its
current key would not be capable of extracting its future keys. TUF [30] is a software
update for embedded systems that aims at reducing the impact of key compromise on
the security of software update. TUF is based on role separation and multisignatures,
where particular signatures using distinct private keys ensure different properties of
the software update, e.g., timeliness or authenticity. ASSURED [9] enables applying
secure update techniques, such as TUF, to the IoT setting while providing end-to-end
security and allowing the verification of successful updates. In HEALED, we rely on
a lightweight security architecture for protecting the secrecy of the keys and leverage
MHT to restore the software state of compromised devices. Finally, PoSE [26] presents
a secure remote software update for embedded devices via proof of secure erasure. The
protocol allows restoring a device to its benign software state by ensuring the erasure of
all code on that device. However, PoSE imposes a high communication overhead which
is linear in the size of the genuine software. Moreover, similar to all existing software-
based attestation protocols, PoSE assumes adversarial silence during the execution of
the update protocol.

8 Conclusion
Most of the prominent attacks on embedded devices are at least started through mal-
ware infestation [1, 2, 10, 36]. Remote attestation aims at tackling the problem of mal-
ware infestation by detecting device software compromise. However, current attesta-
tion schemes focus on the detection of malware, and ignore the problem of malware
removal. These schemes usually consider the reaction to software compromise to be an
orthogonal problem. In this paper, we present HEALED – the first attestation scheme
for embedded devices which is capable of disinfecting compromised devices in a se-
cure and efficient manner. The core of HEALED is a software measurement process
based on Merkle Hash Tree (MHT) which allows identifying infected memory regions,
and a healing protocol that efficiently restores these regions to their benign state. We
implemented HEALED on two lightweight security architectures that support remote
attestation and on an autonomous drones testbed. Moreover, we evaluated the energy,
runtime, and hardware costs of HEALED based on measurements of real execution and
on network simulation.
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