
One-Time Programs made Practical

Lianying Zhao1, Joseph I. Choi2, Didem Demirag3, Kevin R. B. Butler2,
Mohammad Mannan3, Erman Ayday4, and Jeremy Clark3

1 University of Toronto, Toronto ON, Canada
2 University of Florida, Gainesville FL, USA

3 Concordia University, Montreal QC, Canada
4 Case Western Reserve University, Cleveland OH, USA

Abstract. A one-time program (OTP) works as follows: Alice pro-
vides Bob with the implementation of some function. Bob can have
the function evaluated exclusively on a single input of his choosing.
Once executed, the program will fail to evaluate on any other input.
State-of-the-art one-time programs have remained theoretical, requiring
custom hardware that is cost-ineffective/unavailable, or confined to ad-
hoc/unrealistic assumptions. To bridge this gap, we explore how the
Trusted Execution Environment (TEE) of modern CPUs can realize the
OTP functionality. Specifically, we build two flavours of such a system:
in the first, the TEE directly enforces the one-timeness of the program;
in the second, the program is represented with a garbled circuit and the
TEE ensures Bob’s input can only be wired into the circuit once, equiva-
lent to a smaller cryptographic primitive called one-time memory. These
have different performance profiles: the first is best when Alice’s input is
small and Bob’s is large, and the second for the converse.

1 Introduction

Consider the well-studied scenario of secure two-party computation: Alice and
Bob want to compute a function on their inputs, but they do not want to disclose
these inputs to each other (beyond what can be inferred from the output of the
computation). This is traditionally handled by an interactive protocol between
Alice and Bob.5 In this paper, we instead study a non-interactive protocol as
follows: Alice prepares a device for Bob with the function and her input included;
once Bob receives this device from Alice, he supplies his input and learns the
outcome of the computation. The device will not reveal the outcome for any
additional inputs (thus, a one-time program [17]). Alice might be a company
selling the device in a retail store, and Bob the customer; the two never interact
directly. By using the device offline, Bob is assured that his input remains private.

To build a one-time program (OTP), we use the Trusted Execution Envi-
ronment (TEE), a hardware-assisted secure mode on modern processors, where
execution integrity and secrecy are ensured [43], with qualities that include plat-
form state binding and protection of succinct secrets.6 TEEs may appear to offer

5 Hazay and Lindell [24] give a thorough treatment of interactive two-party protocols.
6 Further explanation is provided in Appendix A.2.

2 L. Zhao et al.

a trivial solution to OTPs; however, complexities arise due to Bob’s physical pos-
session of the device and, more importantly, performance issues. We propose two
configurations for one-time programs built on TEEs: (1) deployed directly in the
TEE, and (2) deployed indirectly via TEE-backed one-time memory (OTM) [17]
and garbled circuits [71] outside of the TEE. OTMs hold two keys, only one of
which gets revealed (dependent on its input); the other is effectively destroyed.

Contributions. Our system, built using Intel Trusted Execution Technology
(TXT) [18] and Trusted Platform Module (TPM) [62] as the TEE, is available
today (as opposed to custom OTP/OTM implementations using FPGA [29],
PUF [33], quantum mechanisms [8], or online services [34]) and could be built
for less than $500.7

We propose and implement the following OTP variants, considering that
TPM-sealing8 or encrypting data is time-consuming.

• TXT-only seals/unseals Alice’s input directly, and performance is thus sen-
sitive to Alice’s input size. Bob’s input is entered in plaintext and processed
in TXT after he has received the device.

• GC-based converts the logic into garbled circuit, where number of key pairs
is determined by Bob’s input size. Key pairs are encrypted/decrypted with a
master key (MK). This way, the performance is largely determined by Bob’s
input size. Upon receiving the device, he does the one-time selection of key
pairs in TXT to reflect his input. Thereafter, evaluation of the garbled circuit
can be done on any machine with the selected keys.

To illustrate the generality of our solution, we also map the following application
into our proposed OTP paradigm: a company selling devices that will perform a
private genomic test on the customer’s sequenced genome. For this use case, in
one of our two variants (TXT-only), a company can initialize the device in 5.6
seconds and a customer can perform a test in 34 seconds.

2 Preliminaries

2.1 One-Time Program Background

A one-time program can be conceived of as a non-interactive version of a two
party computation: y = f(a, b) where a is Alice’s private input, b is Bob’s, f
is a public function (or program), and y is the output. Alice hands to Bob an
implementation of fa(·) which Bob can evaluate on any input of his choosing:
yb = fa(b). Once he executes on b, he cannot compute fa(·) again on a differ-
ent input. For our practical use-case, we conceive of OTPs with less generality
as originally proposed by Goldwasser et al. [17]; essentially we treat them as
one-time, non-interactive programs that hide Alice and Bob’s private inputs
from each other without any strong guarantees on f itself. Note with a general
compiler for f (which we have for both flavours of our system), it is easy but

7 As an example, Intel STK2mv64CC, a Compute Stick that supports both TXT and
TPM, was priced at $499.95 USD on Amazon.com (as of September 2018).

8 A state-bound cryptographic operation performed by the TPM chip, like encryption.

One-Time Programs made Practical 3

inefficient to keep f private.9 Additional background on one-time programs is
provided in Appendix A.1.

2.2 Threat Model and Requirements

We informally consider an OTP to be secure if the following properties are
achieved: (1) Alice’s input a is confidential from Bob; (2) Bob’s input b is con-
fidential from Alice, and (3) no more than one b can be executed in f(a, b)
per device. We argue the security of our two systems in Section 8 but provide
a synopsis here first. Property 3 is enforced through a trusted execution en-
vironment, either directly (TXT-only variant in Section 4) or indirectly via a
one-time memory device (GC-based TXT in Section 5) as per the Goldwasser et
al. construction. Given Property 3, we consider Property 1 to be satisfied if an
adversary learns at most negligible information about a when they choose b and
observe 〈OTP, f(a, b), b〉 as opposed to simply 〈f(a, b), b〉, where OTP is the en-
tire instantiation of the system, including the TPM-sealed memory and system
details (and for the GC-variant: the garbled circuit and keys revealed through
specifying b). Property 2 is achieved by being provisioned an offline device that
can compute fa(b) without any interaction with Alice. There is a possibility that
the device surreptitiously stores Bob’s input and tries to leak it back to Alice.
We discuss this systems-level attack in Section 8. In Appendix B, we address a
subtle adaptive security attack applicable to the original OTP system.

The seleciton of TEE has to reflect the aforementioned Properties 1 and 3.
Property 3 is achieved by stateful (recording the one-time state) and integrity-
protected (enforcing one-timeness) execution, which is the fundamental purpose
of all today’s TEEs. Moreover, both Properties 1 and 3 mandate no information
leakage, which can occur through either software or physical side-channels. We
choose Intel TXT, primarily because of its exclusiveness, which means: TXT
occupies the entire system when secure execution is started and no other code
can run in parallel. This naturally avoids all software side-channels, an advantage
over non-exclusive TEEs. We do consider using non-exclusive TEEs as future
exploration when the challange of software side-channels has been overcome,
e.g., for Intel SGX, the (recent) continually identified side-channel attacks, such
as Foreshadow [9], branch shadowing [40], cache attacks [7], and more; for ARM
TrustZone, there have been TruSpy [72], Cachegrab [48], etc. They all point to
the situation when trusted and untrusted code run on shared hardware.

The known physical side-channels can also be mitigated in the setting of
our OTP, i.e., DMA attacks are impossible if I/O protection is enable (by the
chipset), and the cold-boot attack [22] can be avoided if we choose computers
with RAM soldered on the motherboard (cannot be removed to be mounted on

9 Essentially, one would define a very general function we might call Apply that will
execute the first input variable on the second: y = Apply(f, b) = f(b). Since f is
now Alice’s private input, it is hidden. The implementation of Apply might be a
universal circuit where f defines the gates’ logic — in this case Apply would leak (an
upper-bound on) the circuit size of f but otherwise keep f private.

4 L. Zhao et al.

anohther machine, see Section 8). For a detailed comparison with other TEEs,
refer to Appendix A.2).

We strive for a reasonable, real-world threat model where we mitigate at-
tacks introduced by our system but do not necessarily resolve attacks that apply
broadly to practical security systems. Specifically, we assume:

• Alice is monetarily driven or at least curious to learn Bob’s input, while Bob
is similarly curious to learn the algorithm of the circuit and/or re-evaluate
it on multiple inputs of his choice.

• We assume Alice produces a device that can be reasonably assured to execute
as promised (disclosed source, attestation quotes over an integral channel,
and no network capabilities).

• We assume that Alice’s circuit (including the function and her input) actually
constitutes the promised functionality (e.g., is a legitimate genomic test).

• We assume the sound delivery of the device to Bob. We do not consider
devices potentially subverted in transit which applies to all electronics [56].

• Both Alice and Bob have to trust the hardware manufacturer (in our case,
Intel and the TPM vendor) for their own purposes. Alice trusts that the cir-
cuit can only be evaluated once on a given input from Bob, while Bob trusts
that the received circuit is genuine and the output results are trustworthy.

• Bob has only bounded computational power, and may go to some lab effort,
such as tapping pins on the motherboard and cloning a hard drive, but not
efforts as complicated as imaging a chip [60, 37, 36].

• Components on the motherboard cannot be manipulated easily (e.g., for-
warding TPM traffic from a forged chip to a genuine one by desoldering).

2.3 Intel TXT and TPM

Intel Trusted Execution Technology (TXT) is also known as “late launch”, for its
capability to launch secure execution at any point, occupying the entire system.
When the CPU enters the special mode of TXT, all current machine state is
discarded/suspended and a fresh secure session is started, hence its exlusiveness,
as opposed to sharing hardware with untrusted code.

Components. TXT relies on three mandatory hardware components to func-
tion: a) CPU. The instruction set is extended with a few new instructions for the
management of TXT execution. b) Chipset. The chipset (on the motherboard)
is respondible for enforcing I/O protection such that the specified range of I/O
space is only accesible by the protected code in TXT; and c) TPM. Trusted Plat-
form Module [62] is a microchip, serving as the secure storage (termed Secure
Element). Its PCR (Platform Configuration Register) is volatile storage contain-
ing the machine state, in the form of concatenated hash values. There are also
multiple PCRs for different purposes. On the TPM, there is also non-volatile
storage (termed NVRAM), allocated in the unit of index of various sizes. Mul-
tiple indices can be defined depending on the capacity of a specific TPM model.

Measured launch. A provisioning stage is always involved where the platform
is assumed trusted and uncompromised. A piece of code is measured (similar

One-Time Programs made Practical 5

to hashing) and the measurements are stored in certain TPM NVRAM indices
as policies. Thereafter (in our case in the normal execution mode with Bob),
the program being loaded is measured and compared with the policies stored in
TPM. The system may then abort execution if mismatch is detected, or otherwise
proceed. This process is enforced by the CPU.

Machine state binding. As run-time secrecy (secret in use) is ensured by
measured launch and I/O isolation, we also need secrecy for stored data (secret
at rest). Alice’s input should not be learned by Bob when the device is shipped
to him. From the start of TXT execution, each stage measures the next stage’s
code and extends the hash values as measurement to the PCR (concatenated
and hashed with the existing value). This way, the measurements are chained,
and at a specific time the PCR value reflects what has been loaded before. The
root of this chained trust is the measured launch.

Such chained measurements (in PCRs) can be used to derive the key for
data encryption, so that only when a desired software stack is running can the
protected data be decrypted. This cryptographic operation performed by the
TPM is termed sealing. A piece of data sealed under certain PCRs can only
be unsealed under the same PCRs, hence bound to a specific machine state.
The sealed data (ciphertext) can be stored anywhere depending on its size. It is
noteworthy to mention that there exists a distinct equivalent of sealing which,
instead of just encryption, stores data in a TPM NVRAM index and binds its
access to a set of PCRs. As a resuilt, without the correct machine state, the
NVRAM index is completely inaccessible (read/write) and thus replaying the
ciphertext is prevented. We term it PCR-bound NVRAM sealing in this paper
and use it for our OTP prototype implementation.

3 Related Work

In the original one-time program paper by Goldwasser et al. [17], OTM is left
as a theoretical device. In the ensuing years, there have been some design sug-
gestions based on quantum mechanisms [8], physically unclonable functions [33],
and FPGA circuits [29]. (a) Järvinen et al. [29] provide an FPGA-based im-
plementation for GC/OTP, with a GC evaluation of AES, as an example of a
complex OTP application. They conclude that although GC/OTP can be real-
ized, their solution should be used only for “truly security-critical applications”
due to high deployment and operational costs. They also provide a cryptographic
mechanism for protecting against a certain adaptive attack with one-time pro-
grams (see Appendix B); it is tailored for situations where the functions output
size is larger than the length of a special holdoff string stored at each OTM.
(b) Kitamura et al. [34] realize OTP without OTM by proposing a distributed
protocol, based on secret sharing, between non-colluding entities to realize the
‘select one key; delete the other key’ functionality. This introduces further in-
teraction and entities. Our approach is in the opposite direction: removing all
interaction (other than transfer of the device) from the protocol. (c) Prior to
OTP being proposed, Gunupudi and Tate [21] proposed count-limited private
key usage for realizing non-interactive oblivious transfer using a TPM. Their so-

6 L. Zhao et al.

lution requires changes in the TPM design (due to lack of a TEE). In contrast,
we utilize unmodified TPM 1.2. (d) In a more generalized setting, ICE [58] and
Ariadne [59] consider the state continuity of any stateful program (including
N-timeness) in the face of unexpected interruption, and propose mechanisms to
ensure both rollback protection and usability (i.e., liveness). We solve the spe-
cific problem of one-timeness/N-timeness, focusing more on how to deal with
input/output and its implication on performance. We do sacrifice liveness (i.e.,
we flip the one-timeness flag upon entry and thus the program might run zero
time if crashed halfway). We believe their approaches can be applied in conjunc-
tion with ours.

4 System 1: TXT-only

Overview. In the first system, we propose to achieve one-timeness by running
the protected program in TEE only once (relying on logic integrity) and stor-
ing its persistent state (e.g., the one-time indicator) in a way that it is only
accessible from within the TEE. To eliminate information leakage from soft-
ware side-channels, we have chosen Intel TXT for its exclusiveness (i.e., no other
software in parallel).10 We hence name this design TXT-only.

To achieve minimal TCB (Trusted Computing Base) and simplicity, we choose
native C programming in TXT (as opposed to running an OS/VM). Therefore,
for one-time programs that have existing implementation in other languages,
per-application adaptation is required (cf. similar porting effort is needed for
the GC-based variant in Section 5). For further consideration of the porting ef-
fort required, refer to Appendix H. For new programs, this may not introduce
extra effort.

Design. We briefly describe the components and workflow of the TXT-only
system as follows. A one-time indicator (flag) is sealed into the PCR-bound TPM
NVRAM to prevent replay attacks. The indicator is checked and then flipped
upon entry of the OTP. Without network connection, the device shipped to the
client can no longer leak any of the client’s secrets to the vendor. Therefore, only
the vendor’s secret input has to be protected. We TPM-seal the vendor input on
hard drive for better scalability, and there is no need to address replay attacks
for vendor input as one-timeness is already enforced with the flag.

The OTP program is loaded by the Intel official project tboot [27] and GRUB.
It complies with the Multiboot specification [16], and for accessing TPM, we
reuse part of the code from tboot, and develop our own functions for commands
that are unavailable elsewhere, e.g., reading/writing indices with PCR-bound
NVRAM sealing. Since we do not load a whole OS into TXT with tboot, we
cannot use OS services for disk I/O access; instead, we implement raw PATA
(Parallel ATA, a legacy interface to the hard drive, compatible mode with SATA)
logic and directly access disk sectors with DMA (Direct Memory Access). In
the provisioning mode, the OTP program performs a one-time setup, such as

10 We consider various TEE options and provide our reasons for choosing Intel TXT
to instantiate the TEE in Appendix A.2.

One-Time Programs made Practical 7

Vendor
Input

[sealed]
Vendor
Input TPM

Client
Input TXT Logic

Output

ABORT

1

2

Vendor

Client

1

0
1TXT TPM

0-flag set
and sealed

0

Fig. 1. Our realization of OTPs spans two phases when relying on TXT alone for the
entire computation. Alice is active only during phase 1; Bob only during phase 2.

initiating the flag in NVRAM, sealing (overwriting) Alice’s secret, etc. Once the
normal execution mode is entered, the program will refuse to run a second time.

Memory exposure. As an optional feature for certain computers with swap-
pable RAM, we expose the unsealed vendor input in very small chunks during
execution. For example, if the vendor input has 100 records, we would unseal one
record into RAM each iteration for processing the whole user input. This way, in
case of the destructive cold boot attack, the adversary only learns one-hundredth
of the vendor’s secret, and no more attempts are possible (the indicator is already
updated).

4.1 TXT-only provisioning/evaluation

Figure 1 gives an overview of TXT-only, illustrating the initial provisioning by
Alice and evaluation of the function upon delivery to Bob. Note that what is
delivered to Bob is the entire computer in our prototype (laptop or barebone
like Intel NUC).

Provisioning at Alice’s site. At first, Alice is tasked with setting up the
box, which will be delivered to Bob. Alice performs the following: (1) Write the
integrity-protected payload/logic in C adapted to the native TXT environment,
e.g., static-linking any external libraries and reading input data in small chunks.
We may refer to it as the TXT program thereinafter. (2) In the provisioning
mode, initialize the flag to 0 and seal.11 The one-timeness flag is stored with the
PCR-bound NVRAM sealing. Instead of depending on a password and regular
sealing, this is like stronger access-controlled ciphertext. (3) Seal Alice’s input
onto the hard drive.

Evaluation at Bob’s site. After receiving the computation box from Alice,
Bob performs the following: (1) Place the file with Bob’s input on the hard
drive. (2) Load the TXT program in normal execution mode, which will read in
Bob’s input and unseal Alice’s input to compute on. (3) Receive the evaluation

11 A flag is more straightforward to implement than a TPM monotonic counter, thanks
to the PCR-bound NVRAM sealing, whereas a counter would involve extra steps
(such as attesting to the counterAuth password).

8 L. Zhao et al.

result (e.g., from the screen or hard drive). As long as it is Bob’s first attempt to
run the TXT program, the computation will be permitted and the result will be
returned to Bob. Otherwise, the TXT program will abort upon loading in step
(2), as shown in Figure 1.

5 System 2: GC-based

As seen in our TXT-only approach to OTP (System 1) the data processing for
protection is only applied to Alice’s input (with either sealing/unsealing or en-
cryption/decryption), and Bob’s input is always exposed in plaintext due to the
machine’s physical possession by Bob. Intuitively, we may think that it is a good
choice when Alice’s input is relatively small regardless of Bob’s input size. How-
ever, there might be other applications where Alice’s input is substantially larger
and become the performance bottleneck. Is there a construction that comple-
ments TXT-only and is less sensitive to Alice’s input size? The answer may lie
in garbled circuits. During garbled circuit execution, randomly generated strings
(or keys) are used to iteratively unlock each gate until arriving at the final out-
put. Alice’s input (size) is only “reflected” in the garbled circuit (assumed not
trivially invertable [17]), and the key pairs (whose number is determined by
Bob’s input size, not to do with Alice’s) are sealed/encrypted, hence insensitive
to Alice’s input size. Details of garbled circuits and their use are explained in
Appendix A.1.

To adapt garbled circuits for OTP, key generation and key selection steps
are separated. As long as we limit key selection to occur a single time, and
the unchosen key of each key pair is never revealed, we can prevent running a
particular circuit on a different input. To prevent keys from being selected more
than once, we need to instantiate a one-time memory (OTM), which reveals the
key corresponding to each input bit and effectively destroys (or its equivalent)
the unchosen key in the key pair. OTM is left as a theoretical device in the
original OTP paper [17]. We realize it using Intel TXT and the TPM. As in
System 1, we seal a one-time flag into the PCR-bound TPM NVRAM, and
minimize the TXT logic to just handle key selection, in preparation for GC
execution. Alice will seal (in advance) key pairs for garbling Bob’s inputs. Bob
may then boot into TXT to receive the keys corresponding to his input. When
Bob reads a key off the device (say for input bit 0), the corresponding key (for
input bit 1) is erased.12 By instantiating an OTM in this manner, we can replace
interactive oblivious transfer (OT) and perform the rest of the garbled circuit
execution offline, passing key output from trusted selection. By combining TXT
and garbled circuits in this way, sealing complexity is now tied to Bob’s inputs.
We name this alternate construction GC-based (System 2).

Performance overhead with TPM sealing. According to our measurement,
each TPM sealing/unsealing operation takes about 500ms, and therefore 1 GB of
key pairs would need about 1000 hours, which is infeasible. Instead, we generate
a random number as an encryption key (MK) at provisioning time and the GC

12 Unselected keys remain sealed, if never unsealed it serves as cryptographic deletion.

One-Time Programs made Practical 9

Frigate
Compiler

Battleship
(key gen mode)

Wire
File

Vendor
Input

Boolean
Circuit

TXT Logic
0 1 0 0 …

Key Pairs for
Client Input

Battleship
(evaluation mode) Output

1

2

3

Vendor

ClientTXT

0-flag set
and sealed

0

ABORT

Key Pairs for
Client Input

[sealed]

TPM

1

TPM

0
1 Client Keys

Actual
Client Input

Fig. 2. In our GC-based approach to OTP, Alice generates key pairs and seals them.
Bob unseals the keys that correspond to his input and locally evaluates the function.
For details about Frigate and Battleship, see Appendix C

key pairs are encrypted with MK. We only seal MK. This way, MK becomes per-
deployment, and reprovisioning the system will not make the sealed key pairs
reusable due to the change of MK (i.e., the old MK is replaced by the new key).
Note that we could also apply the same approach to TXT-only (i.e., encrypting
Alice’s input with MK and sealing only MK), if needed by the application.

Memory exposure. Similarly to the TXT-only OTP, our GC-based approach
can also optionally adapt to address the cold-boot attack. MK becomes a sin-
gle point of failure if exposed in such memory attacks, i.e., all key pairs can be
decrypted and one-timeness is lost. As with TXT-only, for smaller-sized client in-
put, we can seal the key pairs directly and only unseal into RAM in small chunks.

5.1 Implementation

We use the Boolean circuit compiler Frigate [44] to implement the garbled circuit
components of GC-based. The interpreter and execution functionalities of Frigate
are separately referred to as Battleship. For our purposes, we split Battleship
execution into two standalone phases: a key pair generation phase (gen) and a
function evaluation phase (evl). The motivation behind our choice of Frigate
and our specific modifications to Battleship are detailed in Appendix C.

Our GC-based approach to OTP relies on TXT for trusted key selection and
leaves the computation for garbled circuits, as shown in Figure 2. In our setting,
Alice represents the vendor and Bob represents the client.

Provisioning at Alice’s site. Alice sets up the OTP box by doing the following:
(1) Initialize flag to 0 and seal in the TXT program’s provisioning mode. (2)

10 L. Zhao et al.

Write and compile, using Frigate, the wire program (.wir), together with Alice’s
input, into the circuit.13 (3) Load the compiled .mfrig and .ffrig files, vendor’s
input, and the Battleship executable onto the box. (4) Write the TXT program
(for key selection) in the same way as in TXT-only. (5) Run Battleship in key-
generation mode to generate the k0i and k1i key-pairs corresponding to each of
the i bits of Bob’s input. These are saved to file. (6) Seal the newly generated
key pairs onto the hard-drive in provisioning mode of the TXT program. Alice is
able to generate the correct number of key pairs, since garbled circuit programs
take inputs of a predetermined size, meaning Alice knows the size of Bob’s input.
Costly sealing of all key pairs could be switched out for sealing of the master
key (MK) used to encrypt the key pairs.

Evaluation at Bob’s site. Bob, upon receiving the OTP box from Alice,
performs the following steps to evaluate the function on his input: (1) Place
the file with Bob’s input bits on the hard drive. (2) Load the TXT program
in normal (non-provisioning) mode for key selection. (3) Receive selected keys
corresponding to Bob’s input bits; these are output to disk in plaintext. As
long as it is Bob’s first attempt to select keys, the TXT program will return
the keys corresponding to Bob’s input. Otherwise, the TXT program will abort
upon loading in step (2), as shown in Figure 2. After Bob’s inputs have been
successfully garbled (or converted into keys) and saved on the disk, Bob can
continue with the evaluation properly. TXT is no longer required. (4) Reboot the
system into the OS (e.g., Ubuntu). (5) Launch Battleship in circuit-evaluation
mode. (6) Receive the evaluation result from Battleship. When Battleship is
launched in circuit-evaluation mode, the saved keys corresponding to Bob’s input
are read in. Battleship also takes vendor input (if not compiled into the circuit)
before processing the garbled circuit. The Boolean circuit is read in from the
.mfrig and .ffrig files produced by Frigate. Evaluation is non-interactive and
offline. The evaluation result is available only to Bob.

6 Case Study

We apply our proposed systems on a concrete use case based on genomic testing
as a protytype. Later in Section 7, we also present another use case of database
queries for different input sizes. Further potential use cases are discussed in brief
in Appendix E.

Single nucleotide polymorphism (SNP) is a common form of mutation in hu-
man DNA. Certain sets of SNPs determine the susceptibility of an individual to
specific diseases. Analyzing an individual’s set of SNPs may reveal what kind
of diseases a person may have. More generally, genomic data can uniquely iden-
tify a person, as it not only gives information about a person’s association with
diseases, but also about the individual’s relatives [47]. Indeed, advancements
in genomics research have given rise to concerns about individual privacy and

13 The wire program may be written and compiled on a separate machine from that
which will be shipped to Bob. If Alice chooses to use the same machine, the (no
longer needed) raw wire code and Frigate executable should be removed from the
box before provisioning continues.

One-Time Programs made Practical 11

led to a number of related work in this space. For instance, Canim et al. [10]
and Fisch et al. [15] utilize tamper-resistant hardware to analyze/store health
records. Other works [66, 5] investigate efficient, privacy-preserving analysis of
health data.

While a number of different techniques have been proposed for privacy-
preserving genomic testing, ours is the first work to address this using one-time
programs grounded in secure hardware. Other than providing one-timeness, the
proposed scheme also provides (i) non-interactivity, in which the user does not
need to interact with the vendor during the protocol, and (ii) pattern-hiding,
which ensures that the patterns used in vendor’s test are kept private from the
user. On the other hand, homomorphic encryption-based schemes [3] lack non-
interactivity and functional encryption-based schemes [46] lack non-interactivity
and pattern-hiding. We did not specifically implement these other techniques and
compare our solution with them. However, from the performance results that are
reported in the original papers, we can argue that our proposed scheme provides
comparable (if not better) efficiency compared to these techniques.

Our aim is to prevent the adversary (the client/Bob), who uses the device
for genomic testing, from learning which positions of his genome are checked
and how they are checked, specifically for the genomic testing of the breast can-
cer (BRCA) gene. BRCA1 and BRCA2 are tumor suppressor genes. If certain
mutations are observed in these genes, the person will have an increased prob-
ability of having breast and/or ovarian cancer [65]. Hence, genomic testing for
BRCA1 and BRCA2 mutations is highly indicative of individuals’ predisposition
to develop breast and/or ovarian cancer.

We aim also to protect the privacy of the vendor (the company/Alice) that
provides the genomic testing and prevent the case where the adversary extracts
the test, learns how it works, and consequently, tests other people without having
to purchase the test. We aim to protect both the locations that are checked on
the genome and the magnitude of the risk factor corresponding to that position.
Note that client’s input is secure, as Bob is provided the device and he does not
have to interact with Alice to perform the genomic test.

6.1 Genomic Test

In order to perform our genomic testing, we obtained the SNPs related with
BRCA114 along with their risk factors from SNPedia [11], an open source wiki
site that provides the list of these SNPs. The SNPs that are observed on BRCA1
and their corresponding risk factors for breast cancer are listed in Appendix F.

We obtain genotype files of different people from the openSNP website [19].
The genotype files contain the extracted SNPs from a person’s genome. At a
high level, for each SNP of the patient that is linked to BRCA1, we add the
corresponding risk factor to the overall risk.

The details of our genomic algorithm are shown in Appendix G. If a BRCA1-
associated SNP is observed in the patient’s SNP file, we check the allele combi-
nation and add the corresponding risk factor to the total amount. In order to

14 Similarly, we can also list the SNPs for BRCA2 and determine the contribution of
the observed SNPs to the total risk factor.

12 L. Zhao et al.

prevent a malicious client from discovering which SNPs are checked, we check
every line in the patient’s SNP file. If an SNP related to breast cancer is not
observed at a certain position, we add zero to the risk factor rather than skipping
that SNP to prevent the client from inferring checked SNPs using side channels.

Let i denote the reference number of an SNP and sji be the allele combination
of SNP i for individual j. Also, Si and Ci are two vectors keeping all observed
allele combinations of SNP i and the corresponding risk factors, respectively.
Then, the equation to calculate the total risk factor for individual j can be
shown as RFj =

∑
i f(sji) where

f(sji) =

{
Ci(`) if sji = Si(`) for ` = 0, 1, . . . , |Si|
0 otherwise

For instance, for the SNP with ID i = rs28897696, Si = <AA,AC> and Ci =
<7, 6>. If the allele combination of SNP rs28897696 for individual j corresponds
to one of the elements in Si, we add the corresponding value from Ci to the total
risk factor.

6.2 Construction for GC-Based

The garbled circuit version of the genomic test presented in Section 6.1 is written
as wire (.wir) code accepted by the Frigate garbled circuit compiler. The code fol-
lows the algorithm in Appendix G, adjusting overall risk factor upon comparing
allele-pairs of matching SNPs and explicitly adding zero when needed.

We choose Bob’s input from AncestryDNA files available on the openSNP
website [19]. We perform preprocessing on these to obtain a compact repre-
sentation of the data (specifics are available in Appendix D). Alice’s input is
hard-coded into the circuit at compile-time, by initializing an unsigned int of
vendor input size and assigning each bit’s value using Frigate’s wire operator.

Final input representation. Following the original design of Battleship, inputs are
accepted as a single string of hex digits (each 4 bits). Each digit is treated sepa-
rately, and input is parsed byte-by-byte (e.g., 4116 is represented as 100000102).

We use 7 hex digits (28 unsigned bits) for the SNP reference number and a
single hex digit (4 unsigned bits) to represent the allele pair out of 16 possible
combinations of A/T/C/G. Alice’s input contains 2 more hex digits (8 signed
bits) for risk factor, supporting individual risk factor values ranging from -128
to 127. We keep risk factor a signed value, since some genetic mutations lower
the risk of disease. Although we did not observe any such mutations pertaining
to BRCA1, our representation gives extensibility to tests for other diseases.

Output representation. The program outputs a signed 16-bit value, allowing us
to support cumulative risk factor ranging from -32,768 to 32,767.15
15 This can easily be adjusted, but is accompanied by substantial changes in the re-

sulting circuit size. For example, an 11 GB circuit that outputs 16 bits grows to
18 GB by doubling the output size to 32 bits. We conservatively choose 16 bits for
demonstration purposes, but the output size may be reduced as appropriate.

One-Time Programs made Practical 13

6.3 Construction for TXT-only

In TXT-only, the genomic test logic of Section 6.1 is ported in pure C but largely
keeps the representation used by the GC program (Section 6.2). Alice’s input is
in the form of 7 hex digits for the SNP ID, 1 hex digit for the allele pair and 2
digits for the risk factor. Bob’s input is 2 digits shorter without the risk factor.

We pay special attention to minimizing exposure of Alice’s input in RAM
to defend against potential cold-boot attack. We achieve this by processing one
record at a time performing all operations on and deleting it before moving on to
the next record. We also seal each record (10 bytes) into one sealed chunk (322
bytes), which consumes more space. In each iteration, we unseal one of Alice’s
records and compare with all of Bob’s records. For certain laptops and other
computers with RAM soldered on the motherboard, this is optional.

7 Performance evaluation

In this section, we evaluate the two OTP systems’ performance/scalability, with
varying client and vendor inputs, and try to statistically verify the suitability
of the two intuitive designs in different usage scenarios. We perform our eval-
uation on a machine with a 3.50 GHz i7-4771 CPU, Infineon TPM 1.2, 8 GB
RAM, 320 GB primary hard-disk, additional 1 TB hard-disk16 functioning as a
one-time memory (dedicated to storing garbled circuit, and client and vendor in-
put), running Ubuntu 14.04.5 LTS. In one case, we required an alternate testing
environment: a server-class machine with a 40 core 2.20 GHz Intel Xeon CPU
and 128 GB of RAM.17 Details specific to the setup of our genomic testing were
previously given in Section 6.

We perform experiments to determine the effects of varying either client or
vendor input size. Based on the case study, the vendor has 880 bits and the
client has 22.4M bits of input, so we use 224 and 880 as the base numbers for
our evaluation. We multiply by multiples of 10 to show the effect of order-of-
magnitude changes on inputs. We start with 224 for client and 880 for vendor
inputs. When varying client input, we fix vendor input at 880 bits. When varying
vendor input, we fix client input at 224K bits.

7.1 Benchmarking TXT-only

Varying client input. Table 1 shows the timing results for TXT-only pro-
visioning and execution with fixed vendor input and varying client input size.
During provisioning, only the vendor input is sealed, so the provisioning time is
constant in all cases. As client input size increases, so does execution time, but
moderately. Performance is insensitive to client input size up through the 224K
case. Even for the largest (22M) test case, increasing the client input size by two
orders of magnitude results only in a slowdown by a factor of 3.5x.

16 We use a second disk to simulate what is shipped to the client (with all test data
consolidated), separate from our primary disk for development.

17 Another option would have been to upgrade the memory of the initial evaluation
machine, but we chose to forgo this, as a test run on the server-class machine revealed
that upwards of 60 GB would be required (not supportable by the motherboard).

14 L. Zhao et al.

Client Input (bits) Prov. (ms) Exec. (ms)

224 5640.17 9394.58
2K 5640.17 9393.88
22K 5640.17 9388.27
224K 5640.17 9426.56
2M 5640.17 11078.19
22M 5640.17 33427.50

Table 1. TXT-only results with vendor in-
put fixed at 880 bits and varying client in-
put size, averaged over 10 runs. Prov./Exec.
refers to the provisioning mode and execu-
tion mode respectively.

Vendor Input (bits) Prov. (ms) Exec. (ms)
880 5640.17 9426.56
8800 53515.75 92551.43
88000 527026.89 921338.53

Table 2. TXT-only results with client
input fixed at 224k bits and varying
vendor input size, averaged over 10
runs. Performance of TXT-only is lin-
ear and time taken is proportional to
vendor input size.

Varying vendor input. Table 2 shows the timing results with fixed client input
and varying vendor input size. Although we only tested against three configura-
tions, we see an order-of-magnitude increase in vendor input size is accompanied
by an order-of-magnitude increase in both provisioning and execution times.

7.2 Benchmarking GC-based

We use the same experimental setup as used in TXT-only, but with additional
time taken by the GC portion. Vendor and client each incur runtime costs from
a GC (gen/evl) and a sealing-based (Prov./Sel.) phase.

Varying vendor input. We are interested in whether GC-based is less sensitive
to the size of Alice’s input than TXT-only ; see Table 3. Since provisioning (Prov.)
involves sealing a constant number of key pairs, and selection (Sel.) is dependent
on the unsealing of these key pairs to output one key from each, there is no
change. Both Battleship gen and evl mode timing is largely invariant, as well.
Whereas System 1 performance was linearly dependent on vendor input size, we
observe that GC-based (System 2) is indeed not sensitive to vendor input.

Vendor
Input (bits)

gen (ms) Prov. (ms) Sel. (ms) evl (ms)

880 2323.7 4244.03 2508.73 31815.4
8800 3198.7 4244.03 2508.73 32200.4
88000 3286.9 4244.03 2508.73 32000.9

Table 3. GC-based results with client input
fixed at 224k bits, varying vendor input size,
and encryption of keys by a sealed master key,
averaged over 10 runs.

Varying client input. For com-
pleteness, we also examine the
effects of varying client input
size on runtime; see Table 4.
Prov. and Sel. stages are both
slow as client input size in-
creases, since more key pairs must
be sealed/unsealed. gen and evl

times are also affected by an in-
crease in client input bits. Most notably, evl demonstrates a near order-of-
magnitude slowdown from the 224K case to the 2M case, and the slowdown
trend continues into the 22M case (despite using the better-provisioned machine
to evaluate the 22M case). We indeed find that TXT-only OTP is complemented
by GC-based OTP, where performance is sensitive to client input.

7.3 Analysis

Onto our real-world genomic test (among other padded data sets for the eval-
uation purpose), Alice’s input comprises the 22 SNPs associated with BRCA1,
presented in Table 7 of Appendix F. Each SNP entry takes up 40 bits, so Alice’s

One-Time Programs made Practical 15

Client
Input (bits)

gen (ms) Prov. (ms) Sel. (ms) evl (ms)

224 1503.7 843.64 600.55 1350.8
2K 1318.9 906.70 688.62 1631.8
22K 1659.7 991.91 724.24 3643.7
224K 2323.7 4244.03 2508.73 31815.4
2M 16842.8 33934.54 19188.31 305362.8
22M 148387.9* 346606.87 283704.57 3108271*

Table 4. GC-based results with vendor input
fixed at 880 bits, varying client input size, and en-
cryption of keys by a sealed master key, averaged
over 10 runs. Provisioning- and execution-mode
times were measured separately. *s indicate tests
run in an alternate environment, due to insuffi-
cient memory on our primary testing setup.

OTP Type Mode Timing (ms)

TXT-only
Prov. 5640.17
Exec. 33427.50

GC-based

gen 148387.9*
Prov. 346606.87
Sel. 283704.57
evl 3108271*

Table 5. Performance for TXT-
only and GC-based OTP imple-
mentations of the BRCA1 ge-
nomic test, averaged over 10 runs.
Vendor input is 880 bits. Client
input is 22,447,296 bits. *s indi-
cate tests run in an alternate envi-
ronment, due to insufficient mem-
ory on our primary testing setup.

input takes up 880 bits. Bob’s input comprises the 701,478 SNPs drawn from his
AncestryDNA file, each of which is represented with 32 bits, adding up to a total
size of 22,447,296 bits. This genomic test corresponds to our earlier experiment
with vendor input size of 880 bits and client input size of 22M bits.

Small Vendor +
Small Client

Small Vendor +
Large Client

TXT-only TXT-only

Large Vendor +
Small Client

Large Vendor +
Large Client

GC-based TXT-only

Table 6. Depending on the in-
put sizes of vendor and client,
one system may be preferred to
the other. GC-based OTP is fa-
vorable when large vendor input
is paired with small client input;
TXT-only OTP otherwise.

Table 5 puts together the results for both
OTP systems. Even at first glance, we see that
TXT-only OTP vastly outperforms the GC-
based OTP. Provisioning is two orders of magni-
tude slower in GC-based OTP, and trusted selec-
tion itself is an order of magnitude slower than
the entire execution mode of TXT-only OTP.
gen and evl further introduce a performance hit
to GC-based OTP (again, despite the fact that
we evaluated this case on a better-provisioned
machine). TXT-only is the superior option for
our genomic application.

Choosing one OTP. We already saw in Sec-
tion 7.1 that TXT-only OTP is less sensitive to client input, whereas we saw in
Section 7.2 that GC-based OTP is less sensitive to vendor input. We illustrate
the four cases in Table 6 in four quadrants.

In this specific use-case of genomic testing, we are in the upper-right quad-
rant and thus the TXT-only OTP dominates. However, other use cases, like the
database querying examples in Appendix E, occupy the lower-left quadrant, in
which case GC-based will outperform the TXT-only OTP. What should we do if
both inputs are of similar size (i.e., equally “small” or “large”)? A safe bet is to
stick with the TXT-only OTP. Even though GC technology continues to improve,
garbled circuits will always be less efficient than running the code natively.

7.4 Another use case: database queries.

To give an example where the vendor input can be significantly large, we may
consider another potential and feasible application of our proposed OTP designs,

16 L. Zhao et al.

where GC-based can outperform TXT-only. It is also in a medical setting where
the protocol is between two parties, namely a company that owns a database
consisting of patient data and a research center that wants to utilize patient
data. The patient data held at the company contains both phenotypical and
genotypical properties. The research center wants to perform a test to determine
the relationship of a certain mutation (e.g., a SNP) with a given phenotype.
There may be three approaches for this scenario:

1. Private information retrieval [12]: PIR allows a user to retrieve data
from a database without revealing what is retrieved. Moreover, the user also
does not learn about the rest of the data in the database (i.e., symmetric
PIR [50]). However, it does not let the user compute over the database (such
as calculating the relationship of a certain genetic variant with a phenotype
among the people in the database).

2. Database is public, query is private: The company can keep its database
public and the research center can query the database as much as it wants.
However, with this approach the privacy of the database is not preserved.
Moreover, there is no limit to the queries that the research center does.
As an alternative to this, database may be kept encrypted and the research
center can run its queries on the encrypted database (e.g., homomorphic
encryption). The result of the query would then be decrypted by the data
owner at the end of the computation [32]. However, this scheme introduces
high computational overhead.

3. Database is not public, query is exposed: In this approach, the com-
pany keeps its database secret and the research center sends the query to
the company. This time the query of the research center is revealed to the
company and the privacy of the research center is compromised.

In the case of GC-based, the company stores its database into the device (in
the form of garbled circuit) and the research center purchases the device to run
its query (in TXT) on it. This system enables both parties’ privacy. The device
does not leak any information about the database and also the company does not
learn about the query of the research center, as the research center purchases
the device and gives the query as an input to it. In order to determine the
relationship of a certain mutation to a phenotype, chi-squared test can be used
to determine the p-value, that helps the research center to determine whether a
mutation has a significant relation to a phenotype. We leave this to future work.

8 Security analysis

a) Replay attacks. The adversary may try to trick the OTP into executing mul-
tiple times by replaying a previous state, even without compromising the TEE,
or the one-time logic therein. The secrets (e.g., MK) only have per-deployment
freshness (fixed at Alice’s site). Nevertheless, in our implementation, the TPM
NVRAM indices where the one-timeness flag and MK are stored are configured
with PCR-bound protection, i.e., outside the correct environment, they are even
inaccessible for read/write, let alone to replay.

One-Time Programs made Practical 17

b) Memory side-channel attacks. Despite the hardware-aided protection
from TEE, sensitive plaintext data must be exposed at certain points. For in-
stance, MK is needed for encrypting/decrypting key pairs, and the key pairs
when being selected must also be in plaintext. Software memory attacks [9, 41,
35] do not apply to our OTP systems, as the selected TEE (TXT) is exclu-
sive. In our design, the code running in TEE does not even involve an OS,
driver, hypervisor, or any software run-time. There are generally two categories
of physical memory attacks: non-destructive ones that can be repeated (e.g.,
DMA attacks [52]); and the destructive (only one attempt) physical cold-boot
attack [22]. All I/O access (especially DMA) is disabled for the TEE-protected
regions and thus DMA attacks no longer pose a threat.

The effective cold-boot attack requires that the RAM modules are swappable
and plaintext content is in RAM. For certain laptops or barebone computers [30],
their RAM is soldered on the motherboard and completely unmountable (and
thus immune). To ensure warm-boot attacks [64] (e.g., reading RAM content on
the same computer by rebooting it with a USB stick) are also prevented, we
can set the Memory Overwrite Request (MOR) bit to signal the UEFI/BIOS to
wipe RAM on the next reboot before loading any system (cf. the official TCG
mitigation [61]). We do take into account the regular desktops/laptops vulnerable
to the cold-boot attack: For small-sized secrets like MK, existing solutions [45,
20, 63, 53] can be used, where CPU/GPU registers or cache memory are used
to store secrets. For larger secrets, like the key pairs/vendor input, we perform
block-wise processing so that at any time during the execution, only a very small
fraction is exposed. Also, as cold-boot attack is destructive, the adversary will
not learn enough to reveal the algorithm or reuse the key pairs. At least, the
vendor can always choose computers with soldered-down RAM.

c) Attack cost. Bob may try to infer the protected function and vendor inputs
by trying different inputs in multiple instances. This attack may incur a high cost
as Bob will need to order the OTP from Alice several times. This is a limitation
of any offline OTP solution, which can only guarantee one query per box.

d) Cryptographic attacks. The security of one-time programs (and garbled
circuits) is proven in the original paper [17] (updated after caveat [6]), so we do
not repeat the proofs here.

e) Clonability. Silicon attacks on TPM can reveal secrets (including the En-
dorsement Key), but chip imaging/decapping requires high-tech equipment. Thus,
cloning a TPM or extracting an original TPM’s identity/data to populate a
virtual TPM (vTPM) is considered unfeasible. Sealing achieves platform-state-
binding without attestation, so non-genuine environments (including vTPM) will
fail to unseal. Refer to Appendix I for TPM relay attack and SMM attacks. Fur-
thermore, there has been a recent software attack [23] that resets and forges PCR
values during S3 processing exploiting a TPM 2.0 flaw (SRTM) and a software
bug in tboot (DRTM). They (allegedly patched) do not pose a threat to our
OTP design, as neither SRTM nor any OS software (e.g., Linux) is involved, not
to mention our OTP does not support/involve any power management.

18 L. Zhao et al.

f) Input credibility/correctness for genomic tests. Genomic tests should
be run with the user’s consent and an attacker shouldn’t be able to run tests
with fake genomes to infer the test. We can use digital signatures to provide
credibility, and use biometric attributes to ensure ownership. Another related
concern is inference attacks: Genetic disorders may be highly correlated with
each other; e.g., the SNP with ID rs429358 has influence on the risk of hav-
ing both Alzheimer’s disease and heart disease [55]. Thus the result of a single
genomic test can still give information about other diseases. Moreover, circuits
should be designed with the same circuit depth to prevent Bob from inferring
Alice’s input. Additionally, unless a (projective) garbling scheme that realizes
an OTP is designed to provide adaptive privacy, it opens up room for adaptive
attacks [6].18 Solutions include: allowing the adversary to decrypt the circuit but
not learn the output of the circuit until all keys have been chosen [17]; encrypt-
ing the circuit using either a one-time-pad or random-oracle-based encryption
and revealing the decryption key together with the garbled input in the online
phase [6]; and placing a “holdoff” gate into each output wire that cannot be
evaluated until all keys are learned [29].

9 Concluding Remarks

Until now, one-time programs have been theoretical or required highly cus-
tomized/expensive hardware. We shift away from crypto-intensive approaches
to the emerging but time-tested trusted computing technologies, for a practical
and affordable realization of OTPs. With our proposed techniques, which we will
release publicly, anyone can build a one-time program today with off-the-shelf
devices that will execute quickly at a moderate cost. The cost of our proposed
hardware-based solution for a single genomic test can be further diluted by ex-
tension to support multiple tests and multiple clients on a single device (which
our current construction already does). The general methodology we provide can
be adapted to other trusted execution environments to satisfy various application
scenarios and optimize the performance/suitability for existing applications.

References

1. AMD, Inc.: Virtualization Solutions. http://www.amd.com/en-us/solutions/

servers/virtualization (2017)
2. Apple.com: iOS security guide (2018), white Paper. Available at https://www.

apple.com/business/docs/iOS_Security_Guide.pdf

3. Ayday, E., Raisaro, J.L., Laren, M., Jack, P., Fellay, J., Hubaux, J.P.: Privacy-
preserving computation of disease risk by using genomic, clinical, and environmen-
tal data. In: Proceedings of USENIX Security Workshop on Health Information
Technologies (HealthTech’13). No. EPFL-CONF-187118 (2013)

18 For certain classes of circuits, Jafargholi and Wichs [28] claim that garbled circuits
are adaptively secure without further modification, with security loss tied to pebble
complexity of the circuit.

One-Time Programs made Practical 19

4. Azema, J., Fayad, G.: M-Shield mobile security technology: making wireless secure.
Tech. rep., Texas Instruments (2008)

5. Baldi, P., Baronio, R., De Cristofaro, E., Gasti, P., Tsudik, G.: Countering gattaca:
efficient and secure testing of fully-sequenced human genomes. In: Proceedings of
the 18th ACM conference on Computer and communications security. pp. 691–702.
ACM (2011)

6. Bellare, M., Hoang, V.T., Rogaway, P.: Adaptively secure garbling with applica-
tions to one-time programs and secure outsourcing. In: ASIACRYPT (2012)

7. Brasser, F., Müller, U., Dmitrienko, A., Kostiainen, K., Capkun, S., Sadeghi, A.R.:
Software grand exposure: SGX cache attacks are practical. In: 11th USENIX Work-
shop on Offensive Technologies (WOOT 17). Vancouver, BC (2017)

8. Broadbent, A., Gutoski, G., Stebila, D.: Quantum one-time programs. In:
CRYPTO. pp. 344–360 (2013)

9. Bulck, J.V., Minkin, M., Weisse, O., Genkin, D., Kasikci, B., Piessens, F., Sil-
berstein, M., Wenisch, T.F., Yarom, Y., Strackx, R.: Foreshadow: Extracting the
keys to the intel SGX kingdom with transient out-of-order execution. In: USENIX
Security Symposium. pp. 991–1008. Baltimore, MD, USA (2018)

10. Canim, M., Kantarcioglu, M., Malin, B.: Secure management of biomedical data
with cryptographic hardware. IEEE Transactions on Information Technology in
Biomedicine 16(1), 166–175 (2012)

11. Cariaso, M., Lennon, G.: SNPedia: a wiki supporting personal genome annotation,
interpretation and analysis (2010), http://www.SNPedia.com

12. Chor, B., Goldreich, O., Kushilevitz, E., Sudan, M.: Private information retrieval.
In: Foundations of Computer Science, 1995. Proceedings., 36th Annual Symposium
on. pp. 41–50. IEEE (1995)

13. Ermolov, M., Goryachy, M.: How to hack a turned-off computer or running un-
signed code in intel management engine. Tech. rep., Black Hat Europe (2017)

14. Fink, R.A., Sherman, A.T., Mitchell, A.O., Challener, D.C.: Catching the cuckoo:
Verifying tpm proximity using a quote timing side-channel. In: McCune, J.M., Bal-
acheff, B., Perrig, A., Sadeghi, A.R., Sasse, A., Beres, Y. (eds.) Trust and Trust-
worthy Computing. pp. 294–301. Springer Berlin Heidelberg, Berlin, Heidelberg
(2011)

15. Fisch, B.A., Vinayagamurthy, D., Boneh, D., Gorbunov, S.: Iron: Functional en-
cryption using Intel SGX. Tech. rep., IACR eprint (2016)

16. Gnu.org: The multiboot specification (2009), http://www.gnu.org/software/

grub/manual/multiboot/multiboot.html

17. Goldwasser, S., Kalai, Y.T., Rothblum, G.N.: One-Time Programs. In: CRYPTO.
pp. 39–56 (2008)

18. Greene, J.: Intel R© Trusted Execution Technology. Tech. rep. (2012)
19. Greshake, B., Bayer, P.E., Rausch, H., Reda, J.: Opensnp–a crowdsourced web

resource for personal genomics. PLoS One 9(3), 1–9 (2014)
20. Guan, L., Lin, J., Luo, B., Jing, J.: Copker: Computing with private keys without

RAM. In: NDSS. San Diego, CA, USA (Feb 2014)
21. Gunupudi, V., Tate, S.R.: Generalized non-interactive oblivious transfer using

count-limited objects with applications to secure mobile agents. In: Financial Cryp-
tography and Data Security. pp. 98–112. FC’08 (2008)

22. Halderman, J.A., Schoen, S.D., Heninger, N., Clarkson, W., Paul, W., Calandrino,
J.A., Feldman, A.J., Appelbaum, J., Felten, E.W.: Lest we remember: Cold boot
attacks on encryption keys. In: USENIX Security Symposium. San Jose, CA, USA
(2008)

20 L. Zhao et al.

23. Han, S., Shin, W., Park, J.H., Kim, H.: A bad dream: Subverting trusted platform
module while you are sleeping. In: 27th USENIX Security Symposium (USENIX
Security 18). pp. 1229–1246. Baltimore, MD, USA (2018)

24. Hazay, C., Lindell, Y.: Efficient Secure Two-Party Protocols. Springer (2010)
25. Holzer, A., Franz, M., Katzenbeisser, S., Veith, H.: Secure Two-party Computa-

tions in ANSI C. In: CCS. pp. 772–783 (2012)
26. Intel Corporation: Intel Software Guard Extensions (Intel SGX). https://

software.intel.com/en-us/sgx (2016)
27. Intel Corporation: Trusted boot (tboot) (2017), version: 1.8.0. http://tboot.

sourceforge.net/
28. Jafargholi, Z., Wichs, D.: Adaptive Security of Yao’s Garbled Circuits. In: TCC.

pp. 433–458 (2016)
29. Järvinen, K., Kolesnikov, V., Sadeghi, A.R., Schneider, T.: Garbled circuits for

leakage-resilience: Hardware implementation and evaluation of one-time programs.
In: CHES. pp. 383–397. CHES’10 (2010)

30. Jefferies, C.P.: How to identify user-upgradeable notebooks (June 2017),
web article. Available at http://www.notebookreview.com/feature/

identify-user-upgradeable-notebooks/
31. Johnson, S.: Intel R© SGX and Side-Channels. https://software.intel.com/

en-us/articles/intel-sgx-and-side-channels (2017)
32. Kantarcioglu, M., Jiang, W., Liu, Y., Malin, B.: A cryptographic approach to

securely share and query genomic sequences. IEEE Transactions on information
technology in biomedicine 12(5), 606–617 (2008)

33. Kirkpatrick, M.S., Kerr, S., Bertino, E.: PUF ROKs: A hardware approach to read-
once keys. In: Proceedings of the 6th ACM Symposium on Information, Computer
and Communications Security. pp. 155–164. AsiaCCS’11, Hong Kong, China (2011)

34. Kitamura, T., Shinagawa, K., Nishide, T., Okamoto, E.: One-time Programs with
Cloud Storage and Its Application to Electronic Money. In: APKC (2017)

35. Kocher, P., Genkin, D., Gruss, D., Haas, W., Hamburg, M., Lipp, M., Mangard,
S., Prescher, T., Schwarz, M., Yarom, Y.: Spectre attacks: Exploiting speculative
execution. CoRR (2018)

36. Kollenda, B., Koppe, P., Fyrbiak, M., Kison, C., Paar, C., Holz, T.: An exploratory
analysis of microcode as a building block for system defenses. In: Proceedings of
the 2018 ACM SIGSAC Conference on Computer and Communications Security,
CCS 2018, Toronto, ON, Canada, October 15-19, 2018. pp. 1649–1666 (2018)

37. Koppe, P., Kollenda, B., Fyrbiak, M., Kison, C., Gawlik, R., Paar, C., Holz, T.: Re-
verse engineering x86 processor microcode. In: 26th USENIX Security Symposium
(USENIX Security 17). pp. 1163–1180. Vancouver, BC (2017)

38. Kreuter, B., Shelat, A., Mood, B., Butler, K.: PCF: A Portable Circuit Format for
Scalable Two-Party Secure Computation. In: USENIX Security Symposium. pp.
321–336 (2013)

39. Kreuter, B., Shelat, A., Shen, C.: Billion-Gate Secure Computation with Malicious
Adversaries. In: USENIX Security Symposium. pp. 285–300 (2012)

40. Lee, S., Shih, M.W., Gera, P., Kim, T., Kim, H., Peinado, M.: Inferring fine-grained
control flow inside SGX enclaves with branch shadowing. In: 26th USENIX Security
Symposium (USENIX Security 17). pp. 557–574. Vancouver, BC (2017)

41. Lipp, M., Schwarz, M., Gruss, D., Prescher, T., Haas, W., Mangard, S., Kocher,
P., Genkin, D., Yarom, Y., Hamburg, M.: Meltdown. CoRR (2018)

42. Matetic, S., Kostiainen, K., Dhar, A., Sommer, D., Ahmed, M., Gervais, A., Juels,
A., Capkun, S.: Rote: Rollback protection for trusted execution. Tech. rep., ETH
Zurich (2017)

One-Time Programs made Practical 21

43. McCune, J.M.: Reducing the trusted computing base for applications on commod-
ity systems. Ph.D. thesis, Carnegie Mellon University (2009)

44. Mood, B., Gupta, D., Carter, H., Butler, K., Traynor, P.: Frigate: A Validated,
Extensible, and Efficient Compiler and Interpreter for Secure Computation. In:
Euro-SP (2016)

45. Müller, T., Freiling, F.C., Dewald, A.: TRESOR runs encryption securely outside
RAM. In: USENIX Security Symposium. San Francisco, CA, USA (Aug 2011)

46. Naveed, M., Agrawal, S., Prabhakaran, M., Wang, X., Ayday, E., Hubaux, J.P.,
Gunter, C.: Controlled functional encryption. In: CCS. pp. 1280–1291. ACM (2014)

47. Naveed, M., Ayday, E., Clayton, E.W., Fellay, J., Gunter, C.A., Hubaux, J.P.,
Malin, B., Wang, X., et al.: Privacy and security in the genomic era. In: CCS
(2014)

48. nccgroup: Cachegrab (December 2017), available at https://github.com/

nccgroup/cachegrab

49. Ngabonziza, B., Martin, D., Bailey, A., Cho, H., Martin, S.: Trustzone explained:
Architectural features and use cases. In: Collaboration and Internet Computing
(CIC), 2016 IEEE 2nd International Conference on. pp. 445–451. IEEE (2016)

50. Saint-Jean, F.: Java Implementation of a Single-Database Computationally Sym-
metric Private Information Retrieval (cSPIR) Protocol. Tech. rep., Yale University
Department of Computer Science (2005)

51. Schwarz, M., Weiser, S., Gruss, D., Maurice, C., Mangard, S.: Malware Guard
Extension: Using SGX to Conceal Cache Attacks. In: DIMVA (2017)

52. Sevinsky, R.: Funderbolt: Adventures in Thunderbolt DMA attacks, black Hat
USA, 2013

53. Simmons, P.: Security through Amnesia: A software-based solution to the cold
boot attack on disk encryption. In: ACSAC (2011)

54. SNPedia: Magnitude. https://www.snpedia.com/index.php/Magnitude (2014)
55. SNPedia: rs429358. https://www.snpedia.com/index.php/Rs429358 (2017)
56. Sottek, T.: NSA reportedly intercepting laptops purchased online to install spy

malware (December 2013), web article. Available at https://www.theverge.com/

2013/12/29/5253226/nsa-cia-fbi-laptop-usb-plant-spy

57. Spivey, H.C.C.D.M.K.S.C.N.A., Smith, R.: Essentials of Genetics. NPG Education
(2009)

58. Strackx, R., Jacobs, B., Piessens, F.: Ice: A passive, high-speed, state-continuity
scheme. In: Proceedings of the 30th Annual Computer Security Applications Con-
ference. pp. 106–115. ACSAC’14, New Orleans, Louisiana, USA (2014)

59. Strackx, R., Piessens, F.: Ariadne: A minimal approach to state continuity. In:
25th USENIX Security Symposium (USENIX Security 16). pp. 875–892. Austin,
TX (2016)

60. Tarnovsky, C.: Attacking tpm part 2: A look at the ST19WP18 tpm device
(July 2012), dEFCON presentation. Available at https://www.defcon.org/html/
links/dc-archives/dc-20-archive.html

61. Trusted Computing Group: TCG Platform Reset Attack Mitigation Specification
(May 2008)

62. Trusted Computing Group: Trusted Platform Module Main Specifica-
tion, version 1.2, revision 116. https://trustedcomputinggroup.org/

tpm-main-specification/ (2011)
63. Vasiliadis, G., Athanasopoulos, E., Polychronakis, M., Ioannidis, S.: PixelVault:

Using GPUs for securing cryptographic operations. In: CCS. Scottsdale, AZ, USA
(Nov 2014)

22 L. Zhao et al.

64. Vidas, T.: Volatile memory acquisition via warm boot memory survivability. In:
43rd Hawaii International Conference on System Sciences. pp. 1–6 (Jan 2010)

65. Walsh, T., Lee, M.K., Casadei, S., Thornton, A.M., Stray, S.M., Pennil, C., Nord,
A.S., Mandell, J.B., Swisher, E.M., King, M.C.: Detection of inherited mutations
for breast and ovarian cancer using genomic capture and massively parallel se-
quencing. Proceedings of the National Academy of Sciences 107(28), 12629–12633
(2010)

66. Wang, X.S., Huang, Y., Zhao, Y., Tang, H., Wang, X., Bu, D.: Efficient genome-
wide, privacy-preserving similar patient query based on private edit distance. In:
CCS. pp. 492–503. ACM (2015)

67. Wiklander, J.: Secure storage in OP-TEE, available at https://github.com/

OP-TEE/optee_os/blob/master/documentation/secure_storage.md

68. Wojtczuk, R., Rutkowska, J.: Attacking Intel trusted execution technology (Feb
2009), black Hat DC

69. Wojtczuk, R., Rutkowska, J., Tereshkin, A.: Another way to circumvent
Intel trusted execution technology (Dec 2009), technical Report. http://

invisiblethingslab.com/resources/misc09/Another\%20TXT\%20Attack.pdf

70. Xu, Y., Cui, W., Peinado, M.: Controlled-Channel Attacks: Deterministic Side
Channels for Untrusted Operating Systems. In: IEEE Symposium on Security and
Privacy (2015)

71. Yao, A.C.: Protocols for secure computations. In: FOCS (1982)
72. Zhang, N., Sun, K., Shands, D., Lou, W., Hou, Y.T.: Truspy: Cache side-channel

information leakage from the secure world on ARM devices. IACR Cryptology
ePrint Archive 2016, 980 (2016)

One-Time Programs made Practical 23

The appendices are organized as follows:

• Appendix A provides additional background helpful for understanding on
one-time programs, garbled circuits, and one-time memories;

• Appendix B addresses an adaptive security attack on OTP systems;
• Appendix C describes in detail modifications we make to Battleship;
• Appendix D presents preprocessing steps for our case study application;
• Appendix E provides additional one-time program use cases;
• Appendix F lists the SNPs associated with BRCA1;
• Appendix G gives our genomic algorithm;
• Appendix H comments on porting efforts required for OTP; and
• Appendix I discusses SMM and TPM relay attacks.

A Additional Background

A.1 One Time Programs

A one-time program (OTP), as introduced by Goldwasser et al. [17], is an im-
plementation of a deterministic function which is provided by Alice to Bob. We
describe it here with less generality than it was presented originally (see Sec-
tion 2.2 for a reconciliation of both approaches). Consider the implementation
as containing the function itself (unprotected) and Alice’s input to the function
(cryptographically protected). Bob can choose a single input and evaluate the
function (with Alice’s input) on it. With the output, he may be able to infer
something about Alice’s input (depending on the exact function), but he cannot
infer anything about her input beyond this. Since Bob is operating the device
autonomously from Alice, his input is unconditionally private from Alice. The
core requirement of OTP is that while Bob is able to receive the evaluation on
a single input of his choosing, he is unable to obtain an evaluation of any other
input. The mechanism to enforce this is the topic of this paper.

The term ‘one-time program’ is a slight misnomer. One might equate it with
a form of copy protection or digital rights management (DRM). It is worth
illustrating the difference with a simple example. Consider a DRM scenario:
Alice providing Bob with a media player (the function) and a movie (Alice’s
input). The movie will play if Bob inputs a correct access code. In this case,
the stream of the movie is the output of the function; once Bob learns the
output, he can replay it as many times as he wants. Therefore, this is not a valid
application of OTP. Instead, consider the following: Alice provides Bob with a
game of Go (the function) programmed with the latest in artificial intelligence
(Alice’s input). Bob’s moves are his input to the function. He can ‘replay’ the
game with the exact same moves (resulting in the exact same game and outcome)
as many times as he wants (so it is not strictly ‘one-time’), however as soon as
he deviates with a different move, the program will not continue playing. In this
sense, he can only play ‘once,’ limited to a single sequence of moves.

OTPs can be realized in a straightforward way with trusted execution. From
here, we will describe the alternative approach [17] of realizing one-time programs
via a simpler primitive called one-time memory (OTM), and composing OTM
with garbled circuits.

24 L. Zhao et al.

Garbled Circuits. Garbled circuits (GC) were first proposed by Yao [71] as a
technique for achieving secure multiparty computation by at least two parties,
a generator (Alice) and an evaluator (Bob). A program is first converted into
its Boolean circuit representation. For each of the i wires in the circuit, Alice
chooses encryption keys k0i and k1i . Each gate of the circuit takes on the form
of a truth table, and entries of the truth table are permuted to further conceal
whether any particular entry holds a 0- or 1-value. The keys received on each
input wire unlocks a single entry of the truth table, itself a key that is released
on the output wire and fed into the next gate. Bob receives the garbled circuit
from Alice, together with Alice’s garbled inputs. Bob garbles its own inputs
through oblivious transfer (OT) with Alice. During evaluation, an output key is
iteratively unlocked, or decrypted, from each of the garbled gates until arriving
at the final output, which is revealed to all participants.

One-Time Memory. In summary, one-time programs extend garbled circuits
where the oblivious transfer phase is replaced with a special purpose physical
device called one-time memory (OTM). The protocol proceeds as in garbled
circuits with Bob given the circuit, encoded with Alice’s input under encryption.
Instead of interacting with Alice to learn the keys that correspond to his input,
Alice provisions a device with all keys on it. However when Bob reads a key off
the device (say for input bit 0) the corresponding key (for input bit 1) is erased.
The end result is the same as oblivious transfer: Bob receives exactly one key
for each input bit while not learning the other key, whereas Alice does not learn
which keys Bob selected. The main difference is that key-selection by OTM is
non-interactive, meaning Alice can be completely offline.

A.2 Trusted execution environments

Based on the desired system properties defined in Section 2.2, we now discuss
the requirements a candidate TEE should satisfy.

• R1: Isolated execution with integrity. This corresponds to Property 3, so
that the logic is properly enforced and no additional runs are allowed. Most
TEEs have this fundamental feature.
• R2: Non-volatile secure storage (formally termed Secure Element). Particu-

lar to OTP, intuitively a non-volatile flag is needed to record if the program
has been run (or how many times). This is required for all stateful programs.

• R3: Sealing (machine state binding). For Property 1, the non-run-time se-
crecy of a needs the capability to bind it to the exact desired machine state,
and only under this state can it be retrieved. Such capability is usually called
sealing in most TEEs.

• R4: No software side-channels. To ensure run-time secrecy, there should be
no way for other code (if any) on the same device to learn the secret (or
other protected data). Exclusive TEEs naturally satsfy this requirement.

• R5: No physical side-channels. There should be no physical side-channels,
which specifically refers to either (DMA-related) memory attacks and the
cold-boot attack.

One-Time Programs made Practical 25

Even if not all the requirements (R1 - R5) can be satisfied by a particular TEE,
we would like to see which is best-positioned to realize OTP and what additional
steps can be taken to compensate for those that are missing.

Trusted computing (where TEEs belong) already has a history of more than
a decade (cf. an earlier endeavor of Texas Instrument M-Shield [4] on OMAP).
TEEs are usually architecture-shipped, with a primary focus on securing pro-
cessor execution. They can be categorized as one of the following:

1. Exclusive. Exemplified by Intel TXT, this type of TEE suspends all other
operations on the processor and owns all resources before it exits. The ad-
vantage is less attack vectors exposed.

2. Concurrent. Represented by Intel SGX and ARM TrustZone, this type cre-
ates secure enclaves or worlds that exist alongside other processes. There
might be multiple instances at the same time. These are more suitable for
application-level logic.

We now present a few of the typical TEE options in the context of OTP, and
discuss their suitability for matching each of our stated requirements. All TEEs
satisfy R1, without need for explicit deliberation.

Intel TXT [18] and AMD SVM [1]. TXT and SVM are simply counterparts
on their respective vendor’s platform, with nearly the same properties (slight
differences). They are exclusive by nature and rely on a security chip called TPM
(Trusted Platform Module), corresponding to R2. When the secure session is
started anytime, TXT/SVM measures the loaded binaries and stores the results
in TPM. Two primitives are important: 1) Measured launch. TXT/SVM can
compare the measurements with the “good” values in TPM and aborts execution
if mismatch occurs. 2) Sealing (platform binding, satisfying R3). Sealed data
can only be accessed in the intact, genuine program and correct platform. Their
exclusiveness naturally meets R4, as no other code can be run simultaneously.
As desktop processors, detachable RAM modules are inevitable, so the cold-boot
attack fails R5. We will discuss a workaround in Section 4.

ARM TrustZone [49]. TrustZone introduces the notion of secure world and
normal world. The secure world coexists with the normal world, with everything
(including I/O) separated. The two can communicate through a special monitor.
This leaves it questionable for R4, as there might be potential side-channel
attacks from code running in the normal world. Since it is coupled with the
ARM architecture, we can use it on mobile platforms or a dedicated device
other than a desktop. This intrinsically satisfies R5 as it should be difficult (if
not impossible) to physically extract RAM secrets, e.g., by probing or detaching
memory modules. TrustZone also supports sealing satisfying R3. An obvious
advantage of TrustZone is its secure peripheral communication (enabled by the
AMBA3 AXI to APB Bridge). For example, if a small region of the screen is
allocated to the secure world, user input there cannot be intercepted by the
normal world OS. However, in our OTP, we have no need to involve a regular
full-blown OS. Moreover, one of its disadvantages is that the essential secure
element (where secrets are stored, like TPM) is not standardized and always
vendor-specific [67], thus failing R2. This means for any OTP we develop, we

26 L. Zhao et al.

have to collaborate closely with the device manufacturer, whereas for TXT,
we can buy COTS devices. Nevertheless, if such collaboration became possible
for a specific organization, making use of TrustZone on mobile platforms can
significantly lower the cost (from approximately $500 to a few dollars) per device.

Intel SGX [26]. More recent than TXT, SGX (Software Guard Extensions)
can also be utilized to achieve one-timeness. Intel SGX provides finer-grained
isolated environment (measurement-based like TXT) where individual secured
apps (called enclaves) coexist with the untrusted operating system (thus failing
R4). The integrity of the program logic (e.g., refusing to run a second time) is
guaranteed by the measurement of enclaves before loading. However, what was
missing has been a secure persistent storage for the flag (to ensure one-timeness)
and Alice’s input (SGX did not use TPM in the first place); without secure stor-
age, Bob can simply make a copy of both before execution/evaluation, hence
defeating one-timeness. To bring back freshness with SGX-sealed data, Intel re-
cently added support for non-volatile on-chip monotonic counters (similar to
TPM, stored in the SPI flash chip), see ROTE [42]. Therefore, SGX-sealing the
flag and key pairs with replay attack resistance is feasible now (R3). We consider
its R2 to be partial, as there is not dedicated general-purpose secure storage like
TPM. With respect to R5, SGX enclaves’ memory is always encrypted outside
the CPU, thus immune to the cold-boot attack.

There have also been other TEEs around that are not discussed here, for the
reason that either they are less-used or obsoleted (e.g., M-Shield [4]) or no suffi-
cient public information is available to support development (e.g., Apple Secure
Enclave Co-processor [2]). We decide to implement our engineering prototype
with Intel TXT with the following considerations (compared with SGX). Note
that since TrustZone requires vendor collaboration, we skip it for now.

1. Fewer known flaws. TXT has been time-tested and known flaws are al-
ready stable public information (see Section 8). For SGX, there have been
multiple reports regarding various side-channel attacks mounted by mali-
cious/compromised OS or even peer apps [70, 51]. What is worse, Intel ad-
mits it as a known flaw that will remain, leaving the closing of side-channels
as a responsibility of enclave developers [31]. In other words, side-channels
are explicitly out of the thread model of SGX. Such a flaw allows potential
multiple or even unlimited number of executions of the protected program,
which Bob is motivated to do. On the other hand, although TXT used to
have a few system/hardware-level flaws [68, 69] (as no other software can co-
exist), there are no recent such reports, and previous ones have been patched
or not-applicable any more with newer CPU versions. Note that certain at-
tacks based on SMM (System Management Mode) have also been targeting
TXT, but does not pose as much threat here, as explained in Section I.

2. Meltdown [41]/Spectre [35]/Foreshadow [9]. The lately identified flaws
in modern processors make side-channel attacks potentially ubiquitous, due
to the fact that out-of-order execution is a common feature of modern archi-
tectures. What make it worse is the Foreshadow attack specifically targeting

One-Time Programs made Practical 27

SGX (L1 Terminal Fault). Even after a microcode patch, the trustworthiness
is still gone as there is no guarantee that the unique per-CPU key was not
exposed before the patch. All such intrinsic side-channel attacks stem from
multitasking (co-existing programs). Therefore,the exclusive trusted envi-
ronment (where no other OS/entities/processes exist) is more preferable in
achieving one-timeness, which is the case for TXT.

3. Dedicated environment. SGX is positioned differently than TXT and
does not replace it, in the sense that the former allows multiple user-space
instances for cloud applications, whose attestation requires contacting Intel’s
IAS server each time. In contrast, TXT is a dedicated environment, with
reduced attack vectors, that also allows local attestation.

B Adaptive Attacks on OTPs

A subtle security issue arises when comparing the views in the GC-based variant:
〈OTP, f(a, b), b〉 and 〈f(a, b), b〉. In the former case, Bob specifies b bit-by-bit and
starts to learn information about f(a, b) before choosing all bits of b. Bob can
thus adaptively choose the next bits of b based on his observations about the path
through the circuit, and the number of possible paths is generally exponential
in the number of gates. Thus, in a formal simulation-based proof, the simulator
cannot add a convincing OTP to the second view without knowing all of b a
priori.19 Goldwasser et al. add an all-or-nothing transformation to the output of
f(a, b): the output is masked by random bits that are only fully revealed once
all of b is selected.20 In the TXT-only variant, the output is provided at the end
as enforced by the execution of the system.

C The Frigate GC compiler

Frigate. Frigate [44] is a modern Boolean circuit compiler that outperforms sev-
eral other garbled-circuit compilers (e.g., PCF [38], Kreuter et al. [39], CBMC [25])
by orders of magnitude. Frigate is also extensively validated and found to pro-
duce correct and functioning circuits where other compilers fail [44]. For these
reasons, we decide to use Frigate for implementing the garbled circuit compo-
nents of our GC-based OTP.21

Battleship. Battleship, developed by the same group, separates out the inter-
preter and execution functionalities of Frigate. Battleship reads in and interprets

19 This problem does not arise in garbled circuits since the oblivious transfer is com-
pleted prior to providing the circuit.

20 This fixes the issue because the simulator can equivocate on the final masking value
to program the random value, sitting wherever the circuit ends up, with the correct
output value for the now-known input.

21 Although we choose to go with Frigate, it is possible to instantiate our OTP system
with other garbled circuit compilers.

28 L. Zhao et al.

the circuit file produced by Frigate. Battleship is originally designed to be run
interactively by at least two parties, a generator and an evaluator. The generator
is able to independently garble its own inputs, whereas the evaluator depends
on OT to garble its inputs. At each gate of the garbled circuit, a single value
is decrypted from the associated truth table containing encrypted entries. Gar-
bled gates are iteratively decrypted until arriving at the final output, which is
released to either party. Output need not be the same for both parties.

To make Battleship support one-time programs, we do the following:

• Split execution in Battleship into two standalone phases. In the first phase,
a fresh set of random keys (0- and 1-keys for encoding each bit of the client’s
input) is generated and written out to a file. The key pairs contained in this
file will be used during TXT provisioning, after which the file is discarded.
The second phase reads in another file containing the subset of keys chosen
(during trusted selection) according to the client’s input bits and performs
evaluation of the circuit. Battleship did not originally require these file op-
erations since inputs were garbled and immediately usable without needing
to interrupt the system, while we rely on Intel TXT.

• Remove the oblivious-transfer step. In our setting, vendor and client do not
perform interactive computation in real time. Instead, the client receives
the garbled representation of its input during the trusted selection process
inside Intel TXT. The client’s input chosen in this way is not exposed to the
vendor, who no longer has access to the system after sending it to the client.

• Remove dependency on the full set of 0- and 1- keys in the second phase.
In the original Battleship design, generator and evaluator would be separate
parties, so the full set of keys were not visible to the evaluator even though
it remained available to the generator over the course of evaluation. In our
setting, both generator and evaluator functions run on the same machine, so
it is imperative that we make the full key set unavailable. We achieve this by
instead supplying both the chosen subset of keys and the raw binary input
of the client into the second phase of our modified Battleship. In this way,
individual keys can be identified as either 0- or 1-keys without needing to
examine the full key set.

D GC-based Case Study Setup

Client input. To arrive at a compact representation of Bob’s input, we employ
a simple bash shell script to:

• Remove unused chromosome and position fields.
• Remove comment lines at the start of file and line containing field headings.
• Remove the “rs” prefix from each SNP reference #.
• Remove all spaces between fields and line breaks between entries, making

the entire input one line.
• Convert SNP reference numbers into hexadecimal format, and zero-pad the

result to length 7 (hex format allows us to reduce 4 keys per entry for a more
efficient representation).

One-Time Programs made Practical 29

• Merge Allele 1 and Allele 2 fields, and assign a 1-digit hex value to each
possible allele pair.

The removal of all spaces and line breaks caters to the original Battleship design,
which expects inputs to be read in as a single line. It is especially important
that reference numbers be padded with zeroes (e.g., 0x3DE2 (15842), becomes
0x0003DE2), given that we merge all inputs into a single line, so entries can
be parsed using fixed indices. 7 hex digits is sufficient to support all reference
numbers, which have at most 8 decimal digits.

Vendor input. If a particular SNP has more than one (allele pair, risk factor)
mapping, then each of these is treated as a separate input (with SNP reference
number repeated). Although this leads to increased circuit size, specifying Alice’s
input in this manner is necessary in order to avoid subtle timing disparities which
may leak information about the test being performed. The alternative is to make
the if condition at line 10 of Algorithm 1 iterate over the mappings associated
with each SNP. While it would result in less I/O time, fixing the loop bound
according to the maximum number of mappings decreases performance if the
majority of SNPs have few associated mappings. This would also complicate
distinguishing between entries in our compact representation.

E Other Use Cases

Our OTP construction can also be adapted to other uses for one-time programs;
we provide the intuition below. We must also consider the monetary costs as-
sociated with adapting programs into OTP boxes according to our design. If
non-interactivity is not required, interactive garbled circuit protocols may suf-
fice.

Additional genomic tests. Other tests are possible that operate on a sequenced
genome. Further, Bob may have multiple inputs to evaluate on a single function.
For instance, an individual may input two or more genomes for a paternity test
or a disease predisposition test that may also involve other family members. This
functionality can be easily added to the proposed scheme by treating multiple
sets of test data as single input, although it does not provide privacy between
family members (but provides privacy of the set from the vendor).

Temporary transfer of cryptographic ability. OTP lends itself naturally to the
situation when one party must delegate to another the ability to encrypt/decrypt
or sign/verify messages [17]. In this case, individual OTP boxes must be pro-
visioned and given in advance to the designee, with each box only capable of
performing a single crypto-operation. The cost could easily add up, but it might
be acceptable for time-sensitive or infrequent messages of high importance (such
as military communications). If messages are more frequent, then it may be
worthwhile to consider a k-time extension (k > 1) to OTP. In either case, the
designee is never given access to the raw private key. Care must be taken to

30 L. Zhao et al.

restrict the usable time of each box, which can be realized by sealing an end
date in addition to the one-timeness flag.

One-time proofs. As suggested by Goldwasser et al. [17], OTP allows witness-
owners to go offline after supplying a proof token to the prover. This proof token
can be presented to a verifier only once, after which it is invalidated. We can
certainly realize this functionality using our OTP boxes, since proofs produced
by our OTP are invalidated by nature of interactive proof systems and may not
be reused. Depending on the usage environment, using our OTP box may or may
not be cost-effective. While our implemented system may be too costly to serve
as subway tickets, the cost may be justified if our box is used as an access-control
mechanism to a restricted area.

Digital cash. As a one-time program, this was investigated by Kitamura et
al. [34], which used Shamir’s secret sharing in place of OTMs. We borrow their
three-party scenario to reason about our own OTP system.

1. The bank supplies OTP boxes with set dollar values.
2. To make a payment, the user provides to the OTP box the shop’s hash of a

newly generated random number.
• In TXT, the corresponding keys are selected.
• After reboot, the selected keys are input into the garbled circuit pro-

gram, which outputs a signature of the dollar-value concatenated with
the shop’s hash value.

3. The shop verifies the signature.
4. The shop requests cash from the bank using the signature.

Unlike Kitamura et al. [34], we have a proper OTM in the form of the TPM. A
sealed flag value could enforce the one-timeness, preventing the user from giving
valid signatures for more than one shop input. However, our scheme requires
further modification to prevent double-spending, as it is possible for two inde-
pendent shop hash-values to be the same, in which case the user can reuse the
associated signature. Furthermore, OTP for digital cash would not be feasible if
the held dollar value is less than the cost of the OTP box itself, unless the bank
customer’s goal is untraceability.

F Table of SNPs on BRCA1 and their risk factors
The genetic instructions that determine development, growth and certain func-
tions are carried on Deoxyribonucleic acid (DNA) [57]. DNA is in the form
of double helix, which means that DNA consists of two polymer chains that
complement each other. These chains consist of four nucleotides: Adenine (A),
Guanine (G), Cytosine (C), and Thymine (T). Genetic variations are the reason
that approximately 0.5% of an individual’s DNA is different from the reference
genome.

SNP defines a position in the genome referring to a nucleotide that varies
between individuals. Each person has approximately 4 million SNPs. Each SNP
contains two alleles, which correspond to nucleotides

One-Time Programs made Practical 31

SNP Reference Number Position Alleles Risk Factor

rs41293463
43051071

AT 6
GG 6
GT 6

rs28897696
43063903

AA 7
AC 6

rs55770810
43063931

CT 5
TT 5

rs1799966
43071077

GG 2
AG 1.1

rs41293455
43082434

CG 5
CT 5
TT 2

rs1799950
43094464

GG 2
AG 1.5

rs4986850 43093454 AA 2

rs2227945 43092113 GG 2

rs16942 43091983
AG 2
GG 2

rs1800709 43093010 TT 2

rs4986852 43092412 AA 2

rs28897672 43106487
GG 4
GT 4

Table 7. SNPs on BRCA1 and their corresponding risk factors for breast cancer.

Table 7 lists the SNPs related to BRCA1 and the corresponding risk factors.
The magnitude of risk factors ranges from 0 to 10 [54]. A risk factor greater than
3 indicates a significant contribution of that particular allele combination to the
overall risk of contracting breast cancer.

G Genomic Algorithm

The genomic algorithm is shown in Algorithm 1. Here, RF corresponds to the
total risk factor for developing breast cancer. The ”risk factors” file contains the
associations between the observed SNP and the risk factor, while the ”patient
SNPs” file contains a patient’s extracted SNPs.

H Porting effort

To get started with an application based on our OTP (either variant), the very
first step is always creating the payload program, or if existent, porting it to
a designated programming language. In the case of the GC-based, rewriting in
the Frigate-specific limited-C language is necessary. For the TXT-only, the few
technical tweaks such as PATA I/O with our added DMA support are seamlessly
transparent to the application developer, since they are only exposed like POSIX-
like file operations, similar to fopen, fread and fwrite. We argue that regarding

32 L. Zhao et al.

Algorithm 1 Genomic Algorithm

Input: RiskFactors, Patient SNPs
Output: RF
1: procedure Genomic Algorithm(RiskFactors, Patient SNPs)
2: RF = 0
3: for line in Patient SNPs do
4: SNP ID = SNP ID in line

5: ALLELES = two alleles in line

6: for line rf in Risk Factors do
7: SNP ID rf = SNP ID in line rf

8: ALLELES rf = two alleles in line rf

9: if SNP ID = SNP ID rf then
10: if ALLELES = ALLELES rf then
11: RF = RF + risk factor in line rf
12: else
13: RF = RF + 0
14: end if
15: else
16: RF = RF + 0
17: end if
18: end for
19: end for
20: return RF
21: end procedure

the status quo of most existing OTP solutions, this process has to be (quasi-
)manual in terms of programming language. Therefore, we hope, as future work,
to either have an automated framework for OTP-specific conversions or (in the
case of TXT-only) include a lightweight language environment.

I SMM attacks and TPM relay attack

SMM attacks. The System Management Mode (SMM) is a special execution
mode in modern x86 CPUs and considered having (informally) the Ring minus
2 privilege, preempting virtually any other modes. Therefore, although not re-
cently, it was exploited [68] to interfere with TXT execution. This attack assumes
the compromise of the SMI (SMM Interrupt) handler (which is difficult, but fea-
sible in an ad-hoc manner), and during TXT execution an SMI is triggered and
the compromised handler comes in to manipulate anything of the adversary’s
choice. However, in the case of our OTP, we do not load any standard code that
needs SMI and has it enabled (like an OS or hypervisor); instead, our custom
program for key selection or OTP execution has SMI disabled from the first line
of code (not to mention containing any SMI trigger, e.g., writing to port 0xb2),
and thus is not affected by such attacks. Since TXT is exclusive, no other code
can run in parallel.

Note that Alice no longer benefits from any attacks (e.g., stealing Bob’s in-
put) due to loss of physical possession and network connectivity. We exclude, for

One-Time Programs made Practical 33

now, any potential threats from Intel ME (Management Engine) which is referred
to as Ring minus 3 and has a dedicated processor, in the consideration that all
rely on ad-hoc vulnerabilities and this topic is still under open discussion [13].

TPM relay attack [14]. A man-in-the-middle (MitM) attack specifically tar-
geting TPM-like devices impersonates and forwards requests to a (remote) le-
gitimate device, pretending its proximity or co-location on the same machine, to
either learn the secrets or forge authentication/attestation results. In the case
of our OTP, only Bob has physical possession and is motivated for such attacks.
However, since he cannot clone the TPM chip, whatever real traffic directed to
the legitimate one will cause irreversible effect (e.g., flipping the flag) Note that
his intension is not merely mimicking, which does not help. Also, we do not
send TPM commands in plaintext, except for ordinals and certain metadata.
Our ultimate argument is that, regardless of the lab effort we already exclude
in Section 2.2, the integration of TPM in other microchips (e.g., SuperIO) or an
equivalent method will avoid exposing TPM pins for potential probing.

