
A Java Framework for Smart Contracts

Fausto Spoto

Università di Verona, Italy

WTSC 2019, Saint Kitts
February 22, 2019

1 / 16



Programming Smart Contracts

Transactions are atomic computation steps of a blockchain

Smart contracts are an object-oriented presentation of transactions over a shared heap

Which programming language?

Bitcoin uses a low-level non-Turing complete bytecode for programming
transactions

Ethereum uses Turing-complete languages compiled into EVM bytecode (mainly
Solidity)

2 / 16



Solidity

Compared to Bitcoin bytecode, Solidity was a revolution, but. . .

minimal toolbelt (IDE, builders, integrators, testing, analyzers. . . )

low-level semantics (memory/storage distiction is explicit)

no exception handling

weak typing

no inner classes, nor anonymnous classes

no lambda expressions, nor method references

no generics

very small support library

limited production of libraries for blockchain

another language to learn!

What about using Java instead?

3 / 16



Solidity

Compared to Bitcoin bytecode, Solidity was a revolution, but. . .

minimal toolbelt (IDE, builders, integrators, testing, analyzers. . . )

low-level semantics (memory/storage distiction is explicit)

no exception handling

weak typing

no inner classes, nor anonymnous classes

no lambda expressions, nor method references

no generics

very small support library

limited production of libraries for blockchain

another language to learn!

What about using Java instead?

3 / 16



Not Just Us

Java for blockchain programming

there are Java implementations of blockchain nodes

EthereumJ allows Java clients to query Ethereum blockchains

NEO allows one to use the Java syntax for writing smart contracts:

1 public class ICOTemplate extends SmartContract {

2 public static Object deploy() { // static Object !!!

3 if (getTotalSupply().length != 0) {

4 Runtime.log("Insufficient token supply-No action");

5 return false;

6 }

7 Storage.put(Storage.currentContext(), TemplateToken.getOwner(), ...);

8 Storage.put(Storage.currentContext(), NEP5Template.TOTAL_SUPPLY, ...);

9 return true;

10 }

11 }

Aion seems to go in a similar direction

4 / 16



Takamaka: Transparent Use of Java for Smart Contracts

1 import takamaka.lang.Contract; import takamaka.lang.Payable;

2 import takamaka.lang.Storage; import takamaka.util.StorageList;

3

4 public class CrowdFunding extends Contract {

5 private final StorageList<Campaign> campaigns = new StorageList<>(); // generics!

6

7 // callable from everywhere

8 public int newCampaign(Contract beneficiary, int goal) {

9 int campaignId = campaigns.size();

10 campaigns.add(new Campaign(beneficiary, goal));

11 return campaignId;

12 }

13

14 // only callable from another instance of Contract; requires payment

15 public @Payable @Entry void contribute(int amount, int campaignID) {

16 campaigns.elementAt(campaignID).addFunder(caller(), amount);

17 }

18

19 // callable from everywhere

20 public boolean checkGoalReached(int campaignID) {

21 return campaigns.elementAt(campaignID).payIfGoalReached();

22 }
5 / 16



Takamaka: Transparent Use of Java for Smart Contracts

24 private class Campaign extends Storage { // inner class

25 private final Contract beneficiary;

26 private final int fundingGoal;

27 private final StorageList<Funder> funders = new StorageList<>();

28 private int amount; // one could also use BigInteger for this field

29

30 private Campaign(Contract beneficiary, int fundingGoal) {

31 this.beneficiary = beneficiary; this.fundingGoal = fundingGoal;

32 }

33

34 private void addFunder(Contract who, int amount) {

35 funders.add(new Funder(who, amount)); this.amount += amount;

36 }

37

38 private boolean payIfGoalReached() {

39 if (amount >= fundingGoal) {

40 pay(beneficiary, amount); amount = 0; return true;

41 }

42 else

43 return false;

44 }

45 }

46 } 6 / 16



How Takamaka Nodes Execute Transactions

Execute cf = new CrowdFunding():
1 cf = new CrowdFunding(); // Java execution in RAM only

2 updates = emptyset;

3 cf.extractUpdates(updates); // Takamaka provides this method

4 blockchain.store(updates); // expands the blockchain

5 return cfRef = cf.storageReference to the wallet

Execute id = cf.newCampaign(beneficiary, 42):
1 cf = blockchain.deserialize(cfRef);

2 beneficiary = blockchain.deserialize(beneficiaryRef);

3 id = cf.newCampaign(beneficiary, 42); // Java execution in RAM only

4 updates = emptyset;

5 cf.extractUpdates(updates); // Takamaka provides this method

6 beneficiary.extractUpdates(updates);

7 blockchain.store(updates); // expands the blockchain

8 return id to the wallet

7 / 16



Key Features of Takamaka

1 constructors and methods are completely normal Java code, that operates without
explicit primitives for storage manipulation

2 only white-listed methods of the standard Java library can be used: the
deterministic ones

3 the wallet uses storage references to refer to objects in the blockchain, since
actual memory addresses are node-dependent

4 deserialization of storage references is lazy

5 only updates are serialized at the end (this is not standard Java serialization!)

8 / 16



Instrumentation of Contract Classes

public class MyContract extends takamaka.lang.Contract {

public @Entry T m1(args

, Contract caller

) {

entry(caller);

body

}

public @Payable @Entry T m2(int amount, args

, Contract caller

) {

payableEntry(caller, amount);

body

}

}

9 / 16



Instrumentation of Contract Classes

public class MyContract extends takamaka.lang.Contract {

public @Entry T m1(args, Contract caller) {

entry(caller);

body

}

public @Payable @Entry T m2(int amount, args

, Contract caller

) {

payableEntry(caller, amount);

body

}

}

9 / 16



Instrumentation of Contract Classes

public class MyContract extends takamaka.lang.Contract {

public @Entry T m1(args, Contract caller) {

entry(caller);

body

}

public @Payable @Entry T m2(int amount, args, Contract caller) {

payableEntry(caller, amount);

body

}

}

9 / 16



Instrumentation for Gas Metering

Before each bytecode instruction, Takamaka adds a call to
takamaka.lang.Gas.tick(int amount)

the amount depends on the bytecode instruction

tick can throw an OutOfGasException

that exception cannot be caught in code

10 / 16



White-listed Methods

They must be deterministic

methods of java.lang.String*

methods of wrapper classes in java.lang.

java.util.Arrays

java.util.ArrayList, java.util.LinkedList, java.util.PriorityQueue

most java.util.Date

. . .

Black-listed

java.lang.System.currentTimeSystem()

java.lang.Object.hashCode()

. . .

11 / 16



White-listing Surprises

Should we white-list java.util.HashSet and java.util.HashMap?

1 no, since iteration on them is not deterministic! (behavioral non-determinism)

2 no, since (for instance) set.add(element) might call a variable number of times
the hashCode and equals methods on the elements of the set (cost
non-determinism)

A solution is to require that hashCode must be redefined on objects put inside these
collections (enforced by static/dynamic verification)

12 / 16



JVM Code Verification

The JVM verifies that some basic Java constraints are met:

types are strong

visibility modifiers are honored

final methods and classes are not redefined

called methods do exist (no fall-back methods!) or an exception is thrown

accessed fields do exist or an exception is thrown

13 / 16



Takamaka Further Verification

Static

storage classes have only fields of type primitive, storage, java.lang.String,
java.math.BigInteger or java.lang.Object (for generics)

@Entry is only applied to methods of contracts

@Payable is only applied to @Entry methods with an int amount first parameter

@Entry methods are only called from the code of a contract

caller() can only be called on this and from an @Entry method

Dynamic

accessed storage fields of type java.lang.Object actually hold a storage object,
a java.lang.String or a java.math.BigInteger

@Entry methods are only called from a distinct contract instance

@Payable methods receive a non-negative amount and the caller contract has
enough funds

14 / 16



Status of the Project

Done

September 2018: project started

December 2018: first draft of the working principles (this paper!)

February 2019: Java bytecode instrumenter for storage objects and contracts (the
transformation described in the previous slides)

To do

March 2019: execution of instrumented contracts on an in-memory simulation of
a blockchain

April 2019: verification of jars before instrumentation

fall 2019: integration into a real blockchain currently being developed by an
independent company

15 / 16



Open Questions and Future Work

is Takamaka actually keeping track of all storage updates?

does the updates-only approach actually support scalability?

which security guarantees can be proved for Takamaka?

can we add a layer of non-trivial static analysis?

overflow/underflow checks
complexity analysis
inference of parametric gas costs

how much can we enlarge the set of white-listed methods?

which other types can we allow in storage objects? (wrapper types, arrays,
enums. . . )

THANKS!

16 / 16


